原文地址:https://blog.csdn.net/qq_30615903/article/details/80744083 DQN(Deep Q-Learning)是将深度学习deeplearning与强化学习reinforcementlearning相结合,实现了从感知到动作的端到端的革命性算法.使用DQN玩游戏的话简直6的飞起,其中fladdy bird这个游戏就已经被DQN玩坏了.当我们的Q-table他过于庞大无法建立的话,使用DQN是一种很好的选择 1.算法思想 DQN与Qlean…
深度强化学习(DQN-Deep Q Network)之应用-Flappy Bird 本文系作者原创,转载请注明出处:https://www.cnblogs.com/further-further-further/p/10811587.html 目录 1.达到的目的 2.思路 2.1.强化学习(RL Reinforcement Learing) 2.2.深度学习(卷积神经网络CNN) 3.踩过的坑 4.代码实现(python3.5) 5.运行结果与分析 1.达到的目的 游戏场景:障碍物以一定速度往…
文章目录 [隐藏] 1. 强化学习和深度学习结合 2. Deep Q Network (DQN) 算法 3. 后续发展 3.1 Double DQN 3.2 Prioritized Replay 3.3 Dueling Network 4. 总结 强化学习系列系列文章 我们终于来到了深度强化学习. 1. 强化学习和深度学习结合 机器学习=目标+表示+优化.目标层面的工作关心应该学习到什么样的模型,强化学习应该学习到使得激励函数最大的模型.表示方面的工作关心数据表示成什么样有利于学习,深度学习是最…
从这里开始换个游戏演示,cartpole游戏 Deep Q Network 实例代码 import sys import gym import pylab import random import numpy as np from collections import deque from keras.layers import Dense from keras.optimizers import Adam from keras.models import Sequential EPISODES…
这一个专题将会是有关AlphaGo的前世今生以及其带来的AI革命,总共分成三节.本人水平有限,如有错误还望指正.如需转载,须征得本人同意. Road to AI Revolution(通往AI革命之路),在这里我们将探索AlphaGo各项核心技术的源头及发展历程: Countdown to AI Revolution(AI革命倒计时),在这里我们将解构AlphaGo,看它是如何诞生的: AI Revolution and Beyond(AI革命及未来发展),在这里我们将解构AlphaGo Zer…
1. 前言 在前面的章节中我们介绍了时序差分算法(TD)和Q-Learning,当状态和动作空间是离散且维数不高时可使用Q-Table储存每个状态动作对的Q值,而当状态和动作空间是高维连续时,使用Q-Table不动作空间和状态太大十分困难.所以论文Human-level control through deep reinforcement learning提出了用Deep Q Network(DQN)来拟合Q-Table,使得Q-Table的更新操作包在一个黑盒里面,使强化学习的过程更加的通用化…
在前两篇文章强化学习基础:基本概念和动态规划和强化学习基础:蒙特卡罗和时序差分中介绍的强化学习的三种经典方法(动态规划.蒙特卡罗以及时序差分)适用于有限的状态集合$\mathcal{S}$,以时序差分中的Q-Learning算法为例,一般来说使用n行(n = number of states)和m列(m= number of actions)的矩阵(Q table)来储存action-value function的值,如下图所示: 对于连续的状态集合$\mathcal{S}$,上述方法就不能适用…
本文是对Arthur Juliani在Medium平台发布的强化学习系列教程的个人中文翻译,该翻译是基于个人分享知识的目的进行的,欢迎交流!(This article is my personal translation for the tutorial written and posted by Arthur Juliani on Medium.com. And my work is completely based on aim of sharing knowledges and welco…
转自https://zhuanlan.zhihu.com/p/25239682 过去的一段时间在深度强化学习领域投入了不少精力,工作中也在应用DRL解决业务问题.子曰:温故而知新,在进一步深入研究和应用DRL前,阶段性的整理下相关知识点.本文集中在DRL的model-free方法的Value-based和Policy-base方法,详细介绍下RL的基本概念和Value-based DQN,Policy-based DDPG两个主要算法,对目前state-of-art的算法(A3C)详细介绍,其他…
RL分为三大类: (1)通过行为的价值来选取特定行为的方法,具体 包括使用表格学习的 q learning, sarsa, 使用神经网络学习的 deep q network: (2)直接输出行为的 policy gradients: (3)了解所处的环境, 想象出一个虚拟的环境并从虚拟的环境中学习. 另一种分类方式: Model-free and Model-based Model-free:不理解环境…
原文地址:https://www.hhyz.me/2018/08/05/2018-08-05-RL/ 1. 前言 虽然将深度学习和增强学习结合的想法在几年前就有人尝试,但真正成功的开端就是DeepMind在NIPS 2013上发表的 Playing Atari with Deep Reinforcement Learning 一文,在该文中第一次提出Deep Reinforcement Learning 这个名称,并且提出DQN(Deep Q-Network)算法,实现从纯图像输入完全通过学习来…
在之前的强化学习文章里,我们讲到了经典的MDP模型来描述强化学习,其解法包括value iteration和policy iteration,这类经典解法基于已知的转移概率矩阵P,而在实际应用中,我们很难具体知道转移概率P.伴随着这类问题的产生,Q-Learning通过迭代来更新Q表拟合实际的转移概率矩阵 P,实现了强化学习在大多数实际场景中的应用.但是,在很多情况下,诸多场景下的环境状态比较复杂,有着极大甚至无穷的状态空间,维护这一类问题的Q表使得计算代价变得很高,这时就有了通过Deep网络来…
原文地址: https://www.sohu.com/a/231895305_200424 --------------------------------------------------------------------------------------------- 前言 比起人类,深度学习算法已经在很多任务上的表现更优秀.但它们的学习效率很低.一个电子游戏,人类玩一个下午大概就会了,而算法得花上百个小时.Deep Mind认为,这可能是人类的元学习能力占了优势. Deep Mind…
循环神经网络.https://github.com/aymericdamien/TensorFlow-Examples/blob/master/examples/3_NeuralNetworks/recurrent_network.py. 自然语言处理(natural language processing, NLP)应用网络模型.与前馈神经网络(feed-forward neural network,FNN)不同,循环网络引入定性循环,信号在神经元传递不消失继续存活.传统神经网络层间全连接,层…
本文转自:http://mp.weixin.qq.com/s/aAHbybdbs_GtY8OyU6h5WA 专题 | 深度强化学习综述:从AlphaGo背后的力量到学习资源分享(附论文) 原创 2017-01-28 Yuxi Li 机器之心 选自arXiv 作者:Yuxi Li 编译:Xavier Massa.侯韵楚.吴攀   摘要 本论文将概述最近在深度强化学习(Deep Reinforcement Learning)方面喜人的进展.本文将从深度学习及强化学习的背景知识开始,包括了对实验平台的…
强化学习(Reinforcement Learning)简介 强化学习是机器学习中的一个领域,强调如何基于环境而行动,以取得最大化的预期利益.其灵感来源于心理学中的行为主义理论,即有机体如何在环境给予的奖励或惩罚的刺激下,逐步形成对刺激的预期,产生能获得最大利益的习惯性行为. 它主要包含四个元素,环境状态,行动,策略,奖励, 强化学习的目标就是获得最多的累计奖励.RL考虑的是智能体(Agent)与环境(Environment)的交互问题,其中的agent可以理解为学习的主体,它一般是咱们设计的强…
强化学习 课程:Q-Learning强化学习(李宏毅).深度强化学习 强化学习是一种允许你创造能从环境中交互学习的AI Agent的机器学习算法,其通过试错来学习.如上图所示,大脑代表AI Agent并在环境中活动.当每次行动过后,Agent接收到环境反馈.反馈包括回报Reward和环境的下个状态State,回报由模型设计者定义.如果类比人类学习自行车,可以将车从起始点到当前位置的距离定义为回报. 分类: 1)基于价值Value的强化学习算法 - Q-learning 基本思想:根据当前的状态,…
在强化学习(六)时序差分在线控制算法SARSA中我们讨论了时序差分的在线控制算法SARSA,而另一类时序差分的离线控制算法还没有讨论,因此本文我们关注于时序差分离线控制算法,主要是经典的Q-Learning算法. Q-Learning这一篇对应Sutton书的第六章部分和UCL强化学习课程的第五讲部分. 1. Q-Learning算法的引入 Q-Learning算法是一种使用时序差分求解强化学习控制问题的方法,回顾下此时我们的控制问题可以表示为:给定强化学习的5个要素:状态集$S$, 动作集$A…
原文地址: https://www.cnblogs.com/pinard/p/9669263.html ----------------------------------------------------------------------------------------------------- 在强化学习(六)时序差分在线控制算法SARSA中我们讨论了时序差分的在线控制算法SARSA,而另一类时序差分的离线控制算法还没有讨论,因此本文我们关注于时序差分离线控制算法,主要是经典的Q-L…
IT博客网 热点推荐 推荐博客 编程语言 数据库 前端 IT博客网 > 域名隐私保护 免费 DRL前沿之:Hierarchical Deep Reinforcement Learning 来源:互联网 发布:域名隐私保护 免费 编辑:IT博客网 时间:2019/08/26 23:49 1 前言 如果大家已经对DQN有所了解,那么大家就会知道,DeepMind测试的40多款游戏中,有那么几款游戏无论怎么训练,结果都是0的游戏,也就是DQN完全无效的游戏,有什么游戏呢?  比如上图这款游戏,叫做Mo…
目录: 1. 引言 专栏知识结构 从AlphaGo看深度强化学习 2. 强化学习基础知识 强化学习问题 马尔科夫决策过程 最优价值函数和贝尔曼方程 3. 有模型的强化学习方法 价值迭代 策略迭代 4. 无模型的强化学习方法 蒙特卡洛方法 时序差分学习 值函数近似 策略搜索 5. 实战强化学习算法 Q-learning 算法 Monte Carlo Policy Gradient 算法 Actor Critic 算法 6. 深度强化学习算法 Deep Q-Networks(DQN) Deep De…
摘要:学习玩游戏一直是当今AI研究的热门话题之一.使用博弈论/搜索算法来解决这些问题需要特别地进行周密的特性定义,使得其扩展性不强.使用深度学习算法训练的卷积神经网络模型(CNN)自提出以来在图像处理领域的多个大规模识别任务上取得了令人瞩目的成绩.本文是要开发一个一般的框架来学习特定游戏的特性并解决这个问题,其应用的项目是受欢迎的手机游戏Flappy Bird,控制游戏中的小鸟穿过一堆障碍物.本文目标是开发一个卷积神经网络模型,从游戏画面帧中学习特性,并训练模型在每一个游戏实例中采取正确的操作.…
http://lib.csdn.net/article/aimachinelearning/68113 原文地址:http://blog.csdn.net/jinzhuojun/article/details/77144590 和其它的机器学习方向一样,强化学习(Reinforcement Learning)也有一些经典的实验场景,像Mountain-Car,Cart-Pole等.话说很久以前,因为没有统一的开发测试平台,大家都会自己实现,有用C/C++的,有用Python,还有用Matlab的…
注:以下第一段代码是 文章 提供的代码,但是简书的代码粘贴下来不换行,所以我在这里贴了一遍.其原理在原文中也说得很明白了. 算个旅行商问题 基本介绍 戳 代码解释与来源 代码整个计算过程使用的以下公式-QLearning 在上面的公式中,S表示当前的状态,a表示当前的动作,s~表示下一个状态,a~表示下一个动作,γ为贪婪因子,0<γ<1,一般设置为0.8.Q表示的是,在状态s下采取动作a能够获得的期望最大收益,R是立即获得的收益,而未来一期的收益则取决于下一阶段的动作 算法过程 面对问题 这是…
深度强化学习 基本概念 强化学习 强化学习(Reinforcement Learning)是机器学习的一个重要的分支,主要用来解决连续决策的问题.强化学习可以在复杂的.不确定的环境中学习如何实现我们设定的目标. 深度学习 深度学习(Deep Learning)也是机器学习的一个重要分支,也就是多层神经网络,通过多层的非线性函数实现对数据分布及函数模型的拟合.(从统计学角度来看,就是在预测数据分布,从数据中学习到一个模型,然后通过这个模型去预测新的数据) 深度强化学习 深度强化学习(Deep Re…
摘要:第五代无线通信(5G)支持大幅增加流量和数据速率,并提高语音呼叫的可靠性.在5G无线网络中共同优化波束成形,功率控制和干扰协调以增强最终用户的通信性能是一项重大挑战.在本文中,我们制定波束形成,功率控制和干扰协调的联合设计,以最大化信号干扰加噪声比(SINR),并使用深度强化学习解决非凸问题.通过利用深度Q学习的贪婪性质来估计行动的未来收益,我们提出了一种用于6 GHz以下频段的语音承载和毫米波(mmWave)频段的数据承载的算法.该算法利用来自连接用户的报告SINR,基站的发射功率以及所…
2015年,DeepMind团队在Nature杂志上发表了一篇文章名为"Human-level control through deep reinforcement learning"的论文,在这篇论文中,他们提出了DQN算法的改进版本,他们将改进的算法应用到49种不同的Atari 2600游戏中,并且其中的一半实现了超过人类玩家的性能.现在,深度强化学习已经成为了人工智能(Artificial Intelligence,简称AI)领域最前沿的研究方向,在各个应用领域也是备受推崇,如同…
在强化学习(八)价值函数的近似表示与Deep Q-Learning中,我们讲到了Deep Q-Learning(NIPS 2013)的算法和代码,在这个算法基础上,有很多Deep Q-Learning(以下简称DQN)的改进版,今天我们来讨论DQN的第一个改进版Nature DQN(NIPS 2015). 本章内容主要参考了ICML 2016的deep RL tutorial和Nature DQN的论文. 1. DQN(NIPS 2013)的问题 在上一篇我们已经讨论了DQN(NIPS 2013…
摘要 新闻推荐系统中,新闻具有很强的动态特征(dynamic nature of news features),目前一些模型已经考虑到了动态特征. 一:他们只处理了当前的奖励(ctr);. 二:有一些模型利用了用户的反馈,如用户返回的频率.(user feedback other than click / no click labels (e.g., how frequentuser returns) ); 三:会给用户推送一些内容类似的新闻,用户看多了会无聊. 为了解决上述问题,我们提出了DQ…
原文地址: https://www.cnblogs.com/pinard/p/9756075.html ------------------------------------------------------------------------------------------------------- 在强化学习(八)价值函数的近似表示与Deep Q-Learning中,我们讲到了Deep Q-Learning(NIPS 2013)的算法和代码,在这个算法基础上,有很多Deep Q-Le…