Flink系列之1.10版流式SQL应用】的更多相关文章

随着Flink 1.10的发布,对SQL的支持也非常强大.Flink 还提供了 MySql, Hive,ES, Kafka等连接器Connector,所以使用起来非常方便. 接下来咱们针对构建流式SQL应用文章的梗概如下: 1. 搭建流式SQL应用所需要的环境准备. 2. 构建一个按每小时进行统计购买量的应用. 3. 构建每天以10分钟的粒度进行统计应用. 4. 构建按分类进行排行,取出想要的结果应用. 1. 搭建流式应用所需要的环境准备 Kafka,用于将数据写入到Kafka中,然后Flink…
一.设计思想及介绍 基本思想:“一切数据都是流,批是流的特例” 1.Micro Batching 模式 在Micro-Batching模式的架构实现上就有一个自然流数据流入系统进行攒批的过程,这在一定程度上就增加了延时.具体如下示意图: 2.Native Streaming 模式 Native Streaming 计算模式每条数据的到来都进行计算,这种计算模式显得更自然,并且延时性能达到更低.具体如下示意图: 很明显Native Streaming模式占据了流计算领域 "低延时" 的核…
我是3y,一年CRUD经验用十年的markdown程序员‍常年被誉为职业八股文选手 最近如果拉过austin项目代码的同学,可能就会发现多了一个austin-stream模块.其实并不会意外,因为这一切都在计划当中进行. 这个模块主要是接入流式处理平台(flink),用于实时计算清洗数据给到业务以及系统维护者更方便去使用消息推送平台austin. 这篇文章主要来聊聊接入的背景以及我浅薄的经验吧 01.为什么流式处理平台 我在老东家有过处理数据相关的经验,也看到过站内广告「效果数据」的发展历程.…
本文仅是自己看书.学习过程中的个人总结,刚接触流式,视野面比较窄,不喜勿喷,欢迎评论交流. 1.为什么是流式? 为什么是流式而不是流式系统这样的词语?流式系统在我的印象中是相对批处理系统而言的,用来处理流数据,实现数据处理功能的一个系统,而流式一词提醒我要以数据产生的方式去看待数据和以及处理过程,即在现实生活中,数据是以流的形式不断产生的,处理的过程应贴近数据产生的方式. 2.流与批 在处理数据时,对数据而言有:无界和有界之分.无界可以理解为不知道数据产生的停止时间,在数学上可以用前闭后开( […
原创文章,谢绝任何形式转载,否则追究法律责任! ​流的世界,有点乱,群雄逐鹿,流实在太多,看完这个马上又冒出一个,也不知哪个才是真正的牛,据说Flink是位重量级选手,能流计算,还能批处理, 和其他伙伴关系也融洽的很,与HDFS/File/SQL/MQ往来都不在话下,今天我们就来实战一把. 环境:Idea2019.03/Gradle6.0.1/JDK11.0.4/Lambda/RHEL8.0/VMWare15.5/Springboot2.2.1.RELEASE/Mysql8.0.11/Kafka…
Apache Flink is a framework and distributed processing engine for stateful computations over unbounded and bounded data streams. Apache Flink是一个分布式.有状态的流计算引擎. 下面将正式开启Flink系列的学习笔记与总结.(https://flink.apache.org/).此篇是准备篇,主要介绍流处理相关的基础概念.别小看这些理论,对后续的学习与理解很…
随着大数据技术在各行各业的广泛应用,要求能对海量数据进行实时处理的需求越来越多,同时数据处理的业务逻辑也越来越复杂,传统的批处理方式和早期的流式处理框架也越来越难以在延迟性.吞吐量.容错能力以及使用便捷性等方面满足业务日益苛刻的要求. 在这种形势下,新型流式处理框架Flink通过创造性地把现代大规模并行处理技术应用到流式处理中来,极大地改善了以前的流式处理框架所存在的问题.飞马网于3月13日晚,邀请到大数据技术高级架构师-旷东林,在线上直播中,旷老师向我们分享了Flink在诸多方面的创新以及它本…
从flink的官方文档,我们知道flink的编程模型分为四层,sql层是最高层的api,Table api是中间层,DataStream/DataSet Api 是核心,stateful Streaming process层是底层实现. 其中, flink dataset api使用及原理 介绍了DataSet Api flink DataStream API使用及原理介绍了DataStream Api flink中的时间戳如何使用?---Watermark使用及原理 介绍了底层实现的基础Wat…
什么是流式处理呢? 这个问题其实我们大部分时候是没有考虑过的,大多数,我们是把流式处理和实时计算放在一起来说的.我们先来了解下,什么是数据流. 数据流(事件流) 数据流是无边界数据集的抽象 我们之前接触的数据处理,大多都都是有界的.例如:处理某天的数据.某个季度的数据等 无界意味着数据是无限地.持续增长的 数据流会随着时间的推移,源源不断地加入进来 数据流无处不再 信息卡交易 电商购物 快递 网络交换机的流向数据 设备传感器发出的数据 - 这些数据都是无穷无尽的 每一件事情,都可以看成事件序列…
Flink 1.10.0 于近期刚发布,释放了许多令人激动的新特性.尤其是 Flink SQL 模块,发展速度非常快,因此本文特意从实践的角度出发,带领大家一起探索使用 Flink SQL 如何快速构建流式应用. 本文将基于 Kafka, MySQL, Elasticsearch, Kibana,使用 Flink SQL 构建一个电商用户行为的实时分析应用.本文所有的实战演练都将在 Flink SQL CLI 上执行,全程只涉及 SQL 纯文本,无需一行 Java/Scala 代码,无需安装 I…