一个ndarray是一个多维同类数据容器.每一个数组有一个dtype属性,用来描述数组的数据类型. Series是一种一维数组型对象,包含了一个值序列,并且包含了数据标签----索引(index). DataFrame每一列可以是不同类型,即有行索引,又有列索引,可以被是为一个共享相同索引的Series字典.尽管DataFrame是二维的,但可以利用分层索引在DataFrame中展现更高维度的数据. 一.Series.DataFrame---->narray 1)pd.values In [13…
1. Series Series 是一个类数组的数据结构,同时带有标签(lable)或者说索引(index). 1.1 下边生成一个最简单的Series对象,因为没有给Series指定索引,所以此时会使用默认索引(从0到N-1). # 引入Series和DataFrameIn [16]: from pandas import Series,DataFrame In [17]: import pandas as pd In [18]: ser1 = Series([1,2,3,4]) In [19…
一.pandas简单介绍 1.pandas是一个强大的Python数据分析的工具包.2.pandas是基于NumPy构建的.3.pandas的主要功能 --具备对其功能的数据结构DataFrame.Series --集成时间序列功能 --提供丰富的数学运算和操作 --灵活处理缺失数据4.安装方法:pip install pandas5.引用方法:import pandas as pd 二.Series Series是一种类似于一位数组的对象,由一组数据和一组与之相关的数据标签(索引)组成.创建方…
在使用Pandas进行数据处理的时候,我们通常从CSV或EXCEL中导入数据,但有的时候数据都存在数据库内,我们并没有现成的数据文件,这时候可以通过Pymongo这个库,从mongoDB中读取数据,然后载入到Pandas中,只需要简单的三步. 第一步,导入相关的模块: import pymongo import pandas as pd 第二步,设置MongoDB连接信息: client = pymongo.MongoClient('localhost',27017) db = client['…
pandas中的数据结构-DataFrame DataFrame是什么? 表格型的数据结构 DataFrame 是一个表格型的数据类型,每列值类型可以不同 DataFrame 既有行索引.也有列索引 DataFrame 常用于表达二维数据,但可以表达多维数据 DataFrame创建 从字典创建 >>> import pandas as pd >>> frame=pd.DataFrame(data) >>> data={'name':['a','b','…
目录 1  分组操作 1.1  按照列进行分组 1.2  按照字典进行分组 1.3  根据函数进行分组 1.4  按照list组合 1.5  按照索引级别进行分组 2  分组运算 2.1  agg 2.2  transform 2.3  apply 3  利用groupby技术多进程处理DataFrame 我们在这里要讲一个很常用的技术, 就是所谓的分组技术, 这个在数据库中是非常常用的, 要去求某些分组的统计量, 那么我们需要知道在pandas里面, 这些分组技术是怎么实现的. 分组操作 我们…
  昨天晚上,笔者有幸参加了一场面试,有一个环节就是现场编程!题目如下:   示例数据如下,求每名学生(ID)对应的成绩(score)最高的那门科目(class)与ID,用Python实现: 这个题目看上去很简单,其实,并不简单.即要求输出形式如下:   当然,我们一开始能先到的是利用Pandas中的groupby,按ID做groupby,按score取最大值,可是之后的过程就难办了,是将得到的结果与原表做join,还是再想其他办法?   怎么办?答案就是Pandas中groupby的官方文档说…
如何从基于pandas中某些列的值的DataFrame中选择行?在SQL中我将使用: select * from table where colume_name = some_value. 我试图看看熊猫文档,但没有立即找到答案.   要选择列值等于标量some​​_value的行,请使用==: df.loc[df['column_name'] == some_value] 要选择其列值在可迭代值some_values中的行,请使用isin: df.loc[df['column_name'].i…
Python之Pandas中Series.DataFrame实践 1. pandas的数据结构Series 1.1 Series是一种类似于一维数组的对象,它由一组数据(各种NumPy数据类型)以及一组与之相关的数据标签(即索引)组成. 1.2 Series的字符串表现形式为:索引在左边,值在右边. 2. pandas的数据结构DataFrame是一个表格型的数据结构,它含有一组有序的列,每列可以是不同的值类型(数值.字符串.布尔值的). dataframe中的数据是以一个或者多个二位块存放的(…
  Pandas Spark 工作方式 单机single machine tool,没有并行机制parallelism不支持Hadoop,处理大量数据有瓶颈 分布式并行计算框架,内建并行机制parallelism,所有的数据和操作自动并行分布在各个集群结点上.以处理in-memory数据的方式处理distributed数据.支持Hadoop,能处理大量数据 延迟机制 not lazy-evaluated lazy-evaluated 内存缓存 单机缓存 persist() or cache()将…
在对Series对象和DataFrame对象进行索引的时候要明确这么一个概念:是使用下标进行索引,还是使用关键字进行索引.比如list进行索引的时候使用的是下标,而dict索引的时候使用的是关键字. 使用下标索引的时候下标总是从0开始的,而且索引值总是数字.而使用关键字进行索引,关键字是key里面的值,既可以是数字,也可以是字符串等. Series对象介绍: Series对象是由索引index和值values组成的,一个index对应一个value.其中index是pandas中的Index对象…
数据聚合 数据聚合是数据处理的最后一步,通常是要使每一个数组生成一个单一的数值. 数据分类处理: 分组:先把数据分为几组 用函数处理:为不同组的数据应用不同的函数以转换数据 合并:把不同组得到的结果合并起来 1.数据分类处理的核心: groupby()函数 导入模块: import pandas as pdimport numpy as npfrom pandas import Series,DataFrame 生成假数据 df = DataFrame({"sailer":np.ran…
  Pandas Spark 工作方式 单机single machine tool,没有并行机制parallelism不支持Hadoop,处理大量数据有瓶颈 分布式并行计算框架,内建并行机制parallelism,所有的数据和操作自动并行分布在各个集群结点上.以处理in-memory数据的方式处理distributed数据.支持Hadoop,能处理大量数据 延迟机制 not lazy-evaluated lazy-evaluated 内存缓存 单机缓存 persist() or cache()将…
Python之Pandas中Series.DataFrame实践 1. pandas的数据结构Series 1.1 Series是一种类似于一维数组的对象,它由一组数据(各种NumPy数据类型)以及一组与之相关的数据标签(即索引)组成. 1.2 Series的字符串表现形式为:索引在左边,值在右边. 2. pandas的数据结构DataFrame是一个表格型的数据结构,它含有一组有序的列,每列可以是不同的值类型(数值.字符串.布尔值的). dataframe中的数据是以一个或者多个二位块存放的(…
一.简介 categorical是pandas中对应分类变量的一种数据类型,与R中的因子型变量比较相似,例如性别.血型等等用于表征类别的变量都可以用其来表示,本文就将针对categorical的相关内容及应用进行介绍. 二.创建与应用 2.1 基本特性和适用场景 在介绍具体方法之前,我们需要对pandas数据类型中的categorical类型有一个了解,categorical类似R中的因子型变量,可以进行排序操作,但不可以进行数值运算操作,其顺序在其被定义的时候一同确定,而不是按照数字字母词法排…
*从本篇开始所有文章的数据和代码都已上传至我的github仓库:https://github.com/CNFeffery/DataScienceStudyNotes 一.简介 pandas提供了很多方便简洁的方法,用于对单列.多列数据进行批量运算或分组聚合运算,熟悉这些方法后可极大地提升数据分析的效率,也会使得你的代码更加地优雅简洁,本文就将针对pandas中的map().apply().applymap().groupby().agg()等方法展开详细介绍,并结合实际例子帮助大家更好地理解它们…
原始文章链接: https://towardsdatascience.com/how-to-make-your-pandas-loop-71-803-times-faster-805030df4f06 一.前言 如果你使用Python和Pandas进行数据分析,循环是不可避免要使用的.然而,即使对于较小的DataFrame来说,使用标准循环也是非常耗时的,对于较大的DataFrame来说,你懂的.今天,公众号为大家分享一个关于Pandas提速的小攻略,助你一臂之力! 二. 标准循环 Datafr…
Pandas中查看列中数据的种类及个数 读取数据 import pandas as pd import numpy as np filepath = 'your_file_path.csv' data = pd.read_csv(filepath) 查看列中的值类型及个数 data['unit name'].value_counts() 若列的行数超过屏幕显示,设置display.max_rows 若列的列数超过屏幕显示,设置display.max_columns 设置显示20行 pd.set_…
pandas中数据结构-Series pandas简介 Pandas是一个开源的,BSD许可的Python库,为Python编程语言提供了高性能,易于使用的数据结构和数据分析工具.Python与Pandas一起使用的领域广泛,包括学术和商业领域,包括金融,经济学,统计学,分析等.在本教程中,我们将学习PythonPandas的各种功能以及如何在实践中使用它们. pandas安装 安装 pip install pandas 导入 import pandas as pd from pandas im…
在pandas中,经常对数据进行处理 而导致数据索引顺序混乱,从而影响数据读取.插入等. 小笔总结了以下几种重置索引的方法: import pandas as pd import numpy as np df = pd.DataFrame(np.arange(20).reshape((5, 4)),columns=['a', 'b', 'c', 'd']) #得到df: a b c d 0 0 1 2 3 1 4 5 6 7 2 8 9 10 11 3 12 13 14 15 4 16 17 1…
使用 pandas 处理数据时,遍历和并行处理是比较常见的操作了本文总结了几种不同样式的操作和并行处理方法. 1. 准备示例数据 import pandas as pd import numpy as np df = pd.DataFrame(np.random.randint(40, 100, (5, 10)), columns=[f's{i}' for i in range(10)], index=['john', 'bob', 'mike', 'bill', 'lisa']) df['is…
目录 1. Series对象 自定义元素的行标签 使用Series对象定义基于字典创建数据结构 2. DataFrame对象 自定义行标签和列标签 使用DataFrame对象可以基于字典创建数据结构 pandas模块中有两个重要的数据结构对象:Series和DataFrame. 使用这两个数据结构对象可以在计算机的内存中构建虚拟的数据库. 1. Series对象 Series是一种类似于NumPy模块创建的一维数组的对象,与一维数组不同的是,Series对象不仅包含数据元素,还包含一组与数据元素…
Pandas中DateFrame修改列名 在做数据挖掘的时候,想改一个DataFrame的column名称,所以就查了一下,总结如下: 数据如下: >>>import pandas as pd >>>a = pd.DataFrame({'A':[1,2,3], 'B':[4,5,6], 'C':[7,8,9]}) >>> a A B C 0 1 4 7 1 2 5 8 2 3 6 9 方法一:暴力方法 >>>a.columns = […
1.空值 1.1 有两种丢失数据: None: Python自带的数据类型 不能参与到任何计算中 np.nan: float类型 能参与计算,但结果总是nan # None+2 # 报错 # np.nan + 2 # 值仍然是nan 1.2 np.nan(NaN) 数组直接运算会得到nan,但可以使用np.nansum()函数来计算nan,此时视nan为0. ndarr = np.array([1,2,3,np.nan]) np.sum(ndarr) np.nansum(ndarr) Serie…
来自:Python那些事 pandas中accessor功能很强大,可以将它理解为一种属性接口,通过它获得额外的方法. 下面用代码和实例理解一下: import pandas as pd pd.Series._accessors 对于Series数据结构使用_accessors方法,我们得到3个对象:cat, str, dt. .cat:用于分类数据(Categorical data) .str:用于字符数据(String Object data) .dt:用于时间数据(datetime-lik…
p分位函数(四分位数)概念与pandas中的quantile函数 函数原型 DataFrame.quantile(q=0.5, axis=0, numeric_only=True, interpolation=’linear’) 参数 - q : float or array-like, default 0.5 (50% quantile 即中位数-第2四分位数) 0 <= q <= 1, the quantile(s) to compute - axis : {0, 1, ‘index’,…
Pandas中DataFrame修改列名:使用 rename df = pd.read_csv('I:/Papers/consumer/codeandpaper/TmallData/result01-part.csv') df.rename(columns={'time_stamp':'session_id'},inplace=True) print(df) df.to_csv('I:/Papers/consumer/codeandpaper/TmallData/result01-part-re…
一.简介 pandas中的ExcelFile()和ExcelWriter(),是pandas中对excel表格文件进行读写相关操作非常方便快捷的类,尤其是在对含有多个sheet的excel文件进行操控时非常方便,本文就将针对这两个类的使用方法展开介绍: 二.ExcelFile() 在使用ExcelFile()时需要传入目标excel文件所在路径及文件名称,下面是示例: import pandas as pd demo_excel = pd.ExcelFile(r'D:\demo.xlsx') 查…
pandas中DataFrame的ix,loc,iloc索引方式的异同 1.loc: 按照标签索引,范围包括start和end 2.iloc: 在位置上进行索引,不包括end 3.ix: 先在index上索引,索引不到就在index的位置上进行索引(如果index非全整数),不包括end…
pandas中df.ix, df.loc, df.iloc 的使用场景以及区别: https://stackoverflow.com/questions/31593201/pandas-iloc-vs-ix-vs-loc-explanation # Note: in pandas version 0.20.0 and above, ix is deprecated and the use of loc and iloc is encouraged instead. # First, a reca…