【洛谷P2602】数字计数】的更多相关文章

正解:数位dp 解题报告: 传送门! 打算在寒假把学长发过题解的题目都做辣然后把不会的知识点都落实辣! ⁄(⁄ ⁄•⁄ω⁄•⁄ ⁄)⁄ 然后这道题,开始想到的时候其实想到的是大模拟,就有点像之前考试贪心专题里的这题一样 但是仔细一看发现大模拟做得可能太复杂辣,,,讨论有点儿多,但是肯定是讨论得出来的辣想想看省选的时候大力讨论一波就有100pts岂不美哉! 但是反正今天是不会港模拟的解法dei,,,这里港的是数位dp的方法 首先很容易想到的是,数位dp套路来说,它既然是要求[l,r],那就显然是[…
https://www.luogu.org/problemnew/show/P2602 第二道数位dp,因为“数位dp都是模板题”(误),所以是从第一道的基础上面改的. 核心思想就是分类讨论,分不同情况讨论对答案的贡献. 最最重要的是,该数位取与当前位相等的时候,贡献的个数是受这个数位影响的所有数(这个写法里包括它本身),那么就用x减去与x前缀相同的“整数”再+1就可以算出来了. 其他的数位dp……好像就不太会写了,再研究一下. #include<bits/stdc++.h> using na…
### 洛谷 P2602 题目链接 ### 题目大意:给你一个区间,问你区间所有数字中,0.1.2 .... 9 的个数的总和分别为多少. 分析: 枚举 0 ~ 9 进行数位 DP 即可. 注意记忆化搜索:必须要用到第二维来表示,前 1 ~ pos 位,某个数(0 ~ 9)的个数. 例如,我们在求这个区间中 2 的个数,直接看的话,后 pos 位 的 2 的个数好像与 1 ~ pos位 上有多少个 2 并无联系(在 !limit 情况下),那为什么还要开第二维呢? 实际算上来你会发现:比如当枚举…
洛谷1118 数字三角形游戏 题目描述 有这么一个游戏: 写出一个1-N的排列a[i],然后每次将相邻两个数相加,构成新的序列,再对新序列进行这样的操作,显然每次构成的序列都比上一次的序列长度少1,直到只剩下一个数字位置.下面是一个例子:     3   1   2   4       4   3   6         7   9          16 最后得到16这样一个数字. 现在想要倒着玩这样一个游戏,如果知道N,知道最后得到的数字的大小sum,请你求出最初序列a[i],为1-N的一个…
题目链接 https://www.luogu.org/problemnew/show/P1553 题目描述 给定一个数,请将该数各个位上数字反转得到一个新数. 这次与NOIp2011普及组第一题不同的是:这个数可以是小数,分数,百分数,整数.整数反转是将所有数位对调:小数反转是把整数部分的数反转,再将小数部分的数反转,不交换整数部分与小数部分:分数反转是把分母的数反转,再把分子的数反转,不交换分子与分母:百分数的分子一定是整数,百分数只改变数字部分.整数新数也应满足整数的常见形式,即除非给定的原…
洛谷P1144-最短路计数 题目描述: 给出一个\(N\)个顶点\(M\)条边的无向无权图,顶点编号为\(1-N\).问从顶点\(1\)开始,到其他每个点的最短路有几条. 思路: \(Dijkstra\)的一个变形题目. 在跑\(Dijkstra\)松弛的时候,若dis[v] > dis[u] + 1那么res[v]=res[u],若dis[v] == dis[u] + 1那么res[v] += res[u],其中res[v]存储的是点\(1\)到点\(v\)的最短路的数量.这里用到了\(dp\…
洛谷 第一次找规律A了一道紫题,写篇博客纪念一下. 这题很明显是数位dp,但是身为蒟蒻我不会呀,于是就像分块打表水过去. 数据范围是\(10^{12}\),我就\(10^6\)一百万一百万的打表. 于是我就发现了一些规律. 先献给大家一个打表程序吧- #include <bits/stdc++.h> using namespace std; int main() { long long l,r,cnt[10]={}; for (long long t=0;t<=999999;++t) {…
题目链接:https://www.luogu.com.cn/problem/P2602 题目大意: 计算区间 \([L,R]\) 范围内 \(0 \sim 9\) 各出现了多少次? 解题思路: 使用 数位DP 进行求解. 定义一个结构体数组 \(f[pos][all0]\) 表示满足如下条件时 \(0 \sim 9\) 出现的次数: 当前所在数位为第 \(pos\) 位: \(all0\) 为 \(1\) 表示当前状态之前一直都是前置 \(0\) ,为 \(0\) 表示前面的数位上面出现过不为…
数字计数 题目传送门 解题思路 用\(dp[i][j][k]\)来表示长度为\(i\)且以\(j\)为开头的数里\(k\)出现的次数. 则转移方程式为:\(dp[i][j][k] += \sum_{t=0}^{9} dp[i - 1][t][k]\),即在每个数前面放一个\(j\),但是对于放在前面的这个\(j\)我们还没有计算进去,所以有:\(dp[i][j][j] += 10^{i-1}\).注意此时计算的是有前导0的. 接下来见代码(其实是不知道怎么描述). 代码如下 #include <…
P2602 [ZJOI2010]数字计数 题目描述 给定两个正整数 \(a\) 和 \(b\) ,求在 \([a,b]\) 中的所有整数中,每个数码(digit)各出现了多少次. 输入格式 输入文件中仅包含一行两个整数\(a,b\),含义如上所述. 输出格式 输出文件中包含一行 \(10\) 个整数,分别表示 \(0-9\) 在 \([a,b]\) 中出现了多少次. 说明/提示 \(30\%\)的数据中,\(a<=b<=10^6\): \(100\%\)的数据中,\(a<=b<=1…