PixelShuffle】的更多相关文章

有些地方还没看懂, mark一下 文章来源: https://blog.csdn.net/g11d111/article/details/82855946 去年曾经使用过FCN(全卷积神经网络)及其派生Unet,再加上在爱奇艺的时候做过一些超分辨率重建的内容,其中用到了毕业于帝国理工的华人博士Shi Wenzhe(在Twitter任职)发表的PixelShuffle<Real-Time Single Image and Video Super-Resolution Using an Effici…
How to Train a GAN? Tips and tricks to make GANs work 转自:https://github.com/soumith/ganhacks While research in Generative Adversarial Networks (GANs) continues to improve the fundamental stability of these models, we use a bunch of tricks to train th…
torch.nn Parameters class torch.nn.Parameter() 艾伯特(http://www.aibbt.com/)国内第一家人工智能门户,微信公众号:aibbtcom Variable的一种,常被用于模块参数(module parameter). Parameters 是 Variable 的子类.Paramenters和Modules一起使用的时候会有一些特殊的属性,即:当Paramenters赋值给Module的属性的时候,他会自动的被加到 Module的 参…
Learning to Promote Saliency Detectors 原本放在了思否上, 但是公式支持不好, csdn广告太多, 在博客园/掘金上发一下 https://github.com/lartpang/Machine-Deep-Learning 缩写标注: SD: Saliency Detection ZSL: Zero-Shot Learning 关键内容: 没有训练直接将图像映射到标签中的DNN.相反,将DNN拟合为一个嵌入函数,以将像素和显著/背景区域的属性映射到度量空间.…
#https://www.tensorflow.org/install/install_linux#ValidateYourInstallation #https://github.com/MVIG-SJTU/AlphaPose #https://github.com/torch/distro gbt@gbt-Precision-7720:~$ gbt@gbt-Precision-7720:~$ cd MVIG-SJTUgbt@gbt-Precision-7720:~/MVIG-SJTU$ gb…
一.文献解读 我们知道GAN 在图像修复时更容易得到符合视觉上效果更好的图像,今天要介绍的这篇文章——ESRGAN: Enhanced Super-Resolution Generative Adversarial Networks,它 发表于 ECCV 2018 的 Workshops,作者在 SRGAN 的基础上进行了改进,包括改进网络的结构.判决器的判决形式,以及更换了一个用于计算感知域损失的预训练网络. 超分辨率生成对抗网络(SRGAN)是一项开创性的工作,能够在单一图像超分辨率中生成逼…
一.理论 关于SRGAN的的论文中文翻译网上一大堆,可以直接读网络模型(大概了解),关于loss的理解,然后就能跑代码 loss  = mse + 对抗损失 + 感知损失   : https://blog.csdn.net/DuinoDu/article/details/78819344 loss不要乱改,尽量按照原来论文的来,我尝试了  0.2*MSE+0.4*感知损失+0.4*对抗损失 , 结果loss很奇怪,效果也很差 SRGAN的3个重要loss: 二.代码及其理解(源码) (1)文件结…
参考:https://blog.csdn.net/leviopku/article/details/84975282 参考:https://blog.csdn.net/g11d111/article/details/82855946 上采样的概念: 上采样可以理解为任何可以将图像变成更高分辨率的技术:最简单的方式就是重采样和插值法:将输入图片 input image 进行 rescale 到一个想要的尺寸:而且计算每个点的像素点,使用如双线性插值bilinear 等插值方法对其余点进行插值: U…
2019-05-19 从GitHub下载了代码(这里) 代码量虽然不多,但是第一次学,花了时间还是挺多的.根据代码有跑出结果(基本没有改),但是对于数据集的处理还是看的很懵逼,主要是作者的实现都是用类封装,然后调用函数实现,而且每一个代码块没有测试,所以很多代码不知道什么意思,所以,我把能够拆分的进行了拆分,用jupyter重新实现下 一.数据集的理解 在加载成 dataloader 之前应先做预处理 1.对于训练集不是利用RGB训练的,而是使用YCbCr的 Y 通道 2.将训练集图像利用tor…