Hadoop是由Apache基金会开发的一个大数据分布式系统基础架构,最早版本是2003年原Yahoo!DougCutting根据Google发布的学术论文研究而来. 用户可以在不了解分布式底层细节的情况下,轻松地在Hadoop上开发和运行处理海量数据的应用程序.低成本.高可靠.高扩展.高有效.高容错等特性让Hadoop成为最流行的大数据分析系统,然而其赖以生存的HDFS和MapReduce组件却让其一度陷入困境——批处理的工作方式让其只适用于离线数据处理,在要求实时性的场景下毫无用武之地. 因…
背景: 最近线上上了ELK,但是只用了一台Redis在中间作为消息队列,以减轻前端es集群的压力,Redis的集群解决方案暂时没有接触过,并且Redis作为消息队列并不是它的强项:所以最近将Redis换成了专业的消息信息发布订阅系统Kafka, Kafka的更多介绍大家可以看这里:http://blog.csdn.net/lizhitao/article/details/39499283  ,关于ELK的知识网上有很多的哦, 此篇博客主要是总结一下目前线上这个平台的实施步骤,ELK是怎么跟Kaf…
在产品精细化运营时代,经常会遇到产品增长问题:比如指标涨跌原因分析.版本迭代效果分析.运营活动效果分析等.这一类分析问题高频且具有较高时效性要求,然而在人力资源紧张情况,传统的数据分析模式难以满足.本文尝试从0到1实现一款轻量级大数据分析系统——MVP,以解决上述痛点问题. 文章作者:数据熊,腾讯云大数据技术专家. 一.背景及问题 在产品矩阵业务中,通过仪表盘可以快速发现增长中遇到的问题.然而,如何快速洞悉问题背后的原因,是一个高频且复杂的数据分析诉求. 如果数据分析师通过人工计算分析,往往会占…
大数据除了Hadoop还有哪些常用的工具? 1.Hadoop大数据生态平台Hadoop 是一个能够对大量数据进行分布式处理的软件框架.但是 Hadoop 是以一种可靠.高效.可伸缩的方式进行处理的.Hadoop 是可靠的,因为它假设计算元素和存储会失败,因此它维护多个工作数据副本,确保能够针对失败的节点重新分布处理.Hadoop 是高效的,因为它以并行的方式工作,通过并行处理加快处理速度.Hadoop 还是可伸缩的,能够处理 PB 级数据.此外,Hadoop 依赖于社区服务器,因此它的成本比较低…
多年来,我一直想学 Vim.如今 Vim 是我最喜欢的 Linux 文本编辑器,也是开发者和系统管理者最喜爱的开源工具.我说的学习,指的是真正意义上的学习.想要精通确实很难,所以我只想要达到熟练的水平. 我使用了这么多年的 Linux ,我会的也仅仅只是打开一个文件,使用上下左右箭头按键来移动光标,切换到插入模式,更改一些文本,保存,然后退出.但那只是 Vim 的最最基本的操作.我的技能水平只能让我在终端使用 Vim 修改文本,但是它并没有任何一个我想象中强大的文本处理功能.这样我完全无法用 V…
作者 Jonathan Allen ,译者 张晓鹏 Hunk是Splunk公司一款比較新的产品,用来对Hadoop和其他NoSQL数据存储进行探測和可视化,它的新版本号将会支持亚马逊的Elastic MapReduce. 结合Hadoop使用Hunk Hadoop由两个单元组成,首先是被称为HDFS的存储单元,HDFS能够分布在成千上万个复制的节点上.接下来是MapReduce单元,它负责跟踪和管理被命名为map-reduce jobs的作业. 之前,开发人员会用到Splunk Hadoop C…
一.hadoop工具 Hadoop介绍: Hadoop是一个由Apache基金会所开发的分布式系统基础架构.用户可以在不了解分布式底层细节的情况下,开发分布式程序.充分利用集群的威力进行高速运算和存储. Hadoop实现了一个分布式文件系统(Hadoop Distributed File System),简称HDFS.HDFS有高容错性的特点,并且设计用来部署在低廉的(low-cost)硬件上:而且它提供高吞吐量(high throughput)来访问应用程序的数据,适合那些有着超大数据集(la…
原文地址:http://www.parallellabs.com/2013/08/25/impala-big-data-analytics/ 文 / 耿益锋 陈冠诚 大数据处理是云计算中非常重要的问题,自Google公司提出MapReduce分布式处理框架以来,以Hadoop为代表的开源软件受到越来越多公司的重视和青睐.以Hadoop为基础,之后的HBase,Hive,Pig等系统如雨后春笋般的加入了Hadoop的生态系统中.今天我们就来谈谈Hadoop系统中的一个新成员 – Impala. I…
Impala架构分析 Impala是Cloudera公司主导开发的新型查询系统,它提供SQL语义,能查询存储在Hadoop的HDFS和HBase中的PB级大数据.已有的Hive系统虽然也提供了SQL语义,但由于Hive底层执行使用的是MapReduce引擎,仍然是一个批处理过程,难以满足查询的交互性.相比之下,Impala的最大特点也是最大卖点就是它的快速.那么Impala如何实现大数据的快速查询呢?在回答这个问题前,需要先介绍Google的Dremel系统,因为Impala最开始是参照 Dre…
<Hadoop金融大数据分析> Hadoop for Finance Essentials 使用Hadoop,是因为数据量大数据量如此之多,以至于无法用传统的数据处理工具和应用来处理的数据称主大数据 3V定义:即“大量Volume,多样Variety,高速Velocity是与大数据相关的三个属性或维度.大量指的是数据的量很大,多样指的是数据的类型很多,高速指的是数据处理的速度很快 对于一家处理GB级数据的小公司来说,TB级的数据可能被认为是大数据,对于处理TB级数据的大公司来说,PB级的数据,…