Spark checkpoint机制简述】的更多相关文章

本文主要简述spark checkpoint机制,快速把握checkpoint机制的来龙去脉,至于源码可以参考我的下一篇文章. 1.Spark core的checkpoint 1)为什么checkpoint? 分布式计算中难免因为网络,存储等原因出现计算失败的情况,RDD中的lineage信息常用来在task失败后重计算使用,为了防止计算失败后从头开始计算造成的大量开销,RDD会checkpoint计算过程的信息,这样作业失败后从checkpoing点重新计算即可,提高效率. 2)什么时候写ch…
Spark工作机制 主要模块 调度与任务分配 I/O模块 通信控制模块 容错模块 Shuffle模块 调度层次 应用 作业 Stage Task 调度算法 FIFO FAIR(公平调度) Spark应用执行机制 总览 Spark应用提交后经历了一系列的转换,最后成为Task在每个节点上执行. RDD的Action算子触发Job的提交,提交到Spark中的Job生成RDD DAG 由DAGScheduler转化为Stage Dage 每个Stage中产生相应的Task集合 TaskSchedule…
首先rdd.checkpoint()本身并没有执行任何的写操作,只是做checkpointDir是否为空,然后生成一个ReliableRDDCheckpointData对象checkpointData,这个对象完成checkpoint的大部分工作. /** * 只是生成了一个ReliableRDDCheckpointData的对象,并没有具体的实质操作 * Mark this RDD for checkpointing. It will be saved to a file inside the…
1 Overview 当第一次碰到 Spark,尤其是 Checkpoint 的时候难免有点一脸懵逼,不禁要问,Checkpoint 到底是什么.所以,当我们在说 Checkpoint 的时候,我们到底是指什么? 网上找到一篇文章,说到 Checkpoint,大概意思是检查点创建一个已知的节点,SQL Server 数据库引擎可以在意外关闭或崩溃后从恢复期间开始应用日志中包含的更改.所以你可以简单理解成 Checkpoint 是用来容错的,当错误发生的时候,可以迅速恢复的一种机制,这里就不展开讲…
Spark学习笔记总结 03. Spark cache和checkpoint机制 1. RDD cache缓存 当持久化某个RDD后,每一个节点都将把计算的分片结果保存在内存中,并在对此RDD或衍生出的RDD进行的其他动作中重用(不需要重新计算).这使得后续的动作变得更加迅速.RDD相关的持久化和缓存,是Spark最重要的特征之一. val rdd = sc.textFile("hdfs://172.23.27.19:9000/wrd/wc/srcdata/").flatMap(_.s…
一.缓存与持久化机制 与RDD类似,Spark Streaming也可以让开发人员手动控制,将数据流中的数据持久化到内存中.对DStream调用persist()方法,就可以让Spark Streaming自动 将该数据流中的所有产生的RDD,都持久化到内存中.如果要对一个DStream多次执行操作,那么,对DStream持久化是非常有用的.因为多次操作,可以共享 使用内存中的一份缓存数据. 对于基于窗口的操作,比如reduceByWindow.reduceByKeyAndWindow,以及基于…
引入 一般来说,分布式数据集的容错性有两种方式:数据检查点和记录数据的更新. 面向大规模数据分析,数据检查点操作成本很高,需要通过数据中心的网络连接在机器之间复制庞大的数据集,而网络带宽往往比内存带宽低得多,同时还需要消耗更多的存储资源. 因此,Spark选择记录更新的方式.但是,如果更新粒度太细太多,那么记录更新成本也不低.因此,RDD只支持粗粒度转换,即只记录单个块上执行的单个操作,然后将创建RDD的一系列变换序列(每个RDD都包含了他是如何由其他RDD变换过来的以及如何重建某一块数据的信息…
引入 一般来说,分布式数据集的容错性有两种方式:数据检查点和记录数据的更新. 面向大规模数据分析,数据检查点操作成本非常高,须要通过数据中心的网络连接在机器之间复制庞大的数据集,而网络带宽往往比内存带宽低得多,同一时候还须要消耗很多其它的存储资源. 因此,Spark选择记录更新的方式.可是,假设更新粒度太细太多,那么记录更新成本也不低.因此.RDD仅仅支持粗粒度转换,即仅仅记录单个块上运行的单个操作,然后将创建RDD的一系列变换序列(每一个RDD都包括了他是怎样由其它RDD变换过来的以及怎样重建…
Spark中对于数据的保存除了持久化操作之外,还提供了一种检查点的机制,检查点(本质是通过将RDD写入Disk做检查点)是为了通过lineage(血统)做容错的辅助,lineage过长会造成容错成本过高,这样就不如在中间阶段做检查点容错,如果之后有节点出现问题而丢失分区,从做检查点的RDD开始重做Lineage,就会减少开销.检查点通过将数据写入到HDFS文件系统实现了RDD的检查点功能. cache和checkpoint的区别: 缓存(cache)把 RDD 计算出来然后放在内存中,但是RDD…
一.简介 思考一下这个场景:如果重做日志可以无限地增大,同时缓冲池也足够大,那么是不需要将缓冲池中页的新版本刷新回磁盘.因为当发生宕机时,完全可以通过重做日志来恢复整个数据库系统中的数据到宕机发生的时刻. 但是这需要两个前提条件:1.缓冲池可以缓存数据库中所有的数据:2.重做日志可以无限增大 因此Checkpoint(检查点)技术就诞生了,目的是解决以下几个问题:1.缩短数据库的恢复时间:2.缓冲池不够用时,将脏页刷新到磁盘:3.重做日志不可用时,刷新脏页. 当数据库发生宕机时,数据库不需要重做…