[C/C++] 快速幂讲解】的更多相关文章

转自:http://www.cnblogs.com/CXCXCXC/p/4641812.html 快速幂这个东西比较好理解,但实现起来到不老好办,记了几次老是忘,今天把它系统的总结一下防止忘记. 首先,快速幂的目的就是做到快速求幂,假设我们要求a^b,按照朴素算法就是把a连乘b次,这样一来时间复杂度是O(b)也即是O(n)级别,快速幂能做到O(logn),快了好多好多.它的原理如下: 假设我们要求a^b,那么其实b是可以拆成二进制的,该二进制数第i位的权为2^(i-1),例如当b==11时,a^…
这道题普通做法会发生溢出且会超时,应当用快速幂来求解. 快速幂讲解 #include <cstdio> #include <cmath> using namespace std; int main(){ int Z; scanf("%d",&Z); while(Z--){ int M, H; unsigned ; scanf("%d%d",&M,&H); ; i < H; i++){ long long a,b;…
Problem Description 求A^B的最后三位数表示的整数.说明:A^B的含义是“A的B次方”  Input 输入数据包含多个测试实例,每个实例占一行,由两个正整数A和B组成(1<=A,B<=10000),如果A=0, B=0,则表示输入数据的结束,不做处理.  Output 对于每个测试实例,请输出A^B的最后三位表示的整数,每个输出占一行. 简单的说这题就是要求高次幂,有两种方法可以实现. 第一总比较土鳖,每次乘完对1000取余也可以过. 我要讲的是第二种听起来很高大上的方法—…
  首先经过读题,我们发现找到合格的金坷垃,怎么样的金坷垃才是合格的呢?(我们不难发现1肯定是合格的[题目已经给出了]) 然后我们开始手推一下之后合格的金坷垃: 2-1=1(合格) 3-1-1=1(不合格(1重复减了)) 4-2-1=1(合格) ...... 对于任意一个数,他减去他的任意一个约数(除它本身)最小值都为他本身的1/2,我们可以考虑倒着推回去这样就行了,发现合格的金坷垃必须是2的倍数,我们可以用反证法来证明,如果一个合格的金坷垃不是二的倍数,那么最后经过前面的相减肯定会变成一个质数…
快速幂取模算法详解 1.大数模幂运算的缺陷: 快速幂取模算法的引入是从大数的小数取模的朴素算法的局限性所提出的,在朴素的方法中我们计算一个数比如5^1003%31是非常消耗我们的计算资源的,在整个计算过程中最麻烦的就是我们的5^1003这个过程 缺点1:在我们在之后计算指数的过程中,计算的数字不都拿得增大,非常的占用我们的计算资源(主要是时间,还有空间) 缺点2:我们计算的中间过程数字大的恐怖,我们现有的计算机是没有办法记录这么长的数据的,所以说我们必须要想一个更加高效的方法来解决这个问题 2.…
Solution $jzy$大佬用了给的原根的信息,加上矩阵快速幂150行QAQ 然而$yuli$大佬的做法不仅好懂,代码只有50行! 快速幂的思想,把m看成要组成的区间总长度,每次将两段组合得到新的长度. 定义$g[i]$表示当前x为$i$时的方案数,用来最后计算期望,在快速幂中相当于ans,定义$f[i]$代表a,是初始要用来组合的长度为1的方案,再用一个辅助数组转移即可. Code #include<bits/stdc++.h> #define MOD 1000000007 #defin…
题目链接 Problem Description Function Fx,ysatisfies: For given integers N and M,calculate Fm,1 modulo 1e9+7. Input There is one integer T in the first line. The next T lines,each line includes two integers N and M . 1<=T<=10000,1<=N,M<2^63. Output…
给出3个正整数A B C,求A^B Mod C. 例如,3 5 8,3^5 Mod 8 = 3. Input 3个正整数A B C,中间用空格分隔.(1 <= A,B,C <= 10^9) Output 输出计算结果 Input示例 3 5 8 Output示例 3 一道比较简单的快速幂,曾经写过一篇博客,具体讲解请戳链接 #include<iostream> #include<algorithm> #include<string> #include<…
题目 Winder最近在学习fibonacci 数列的相关知识.我们都知道fibonacci数列的递推公式是F(n)=F(n-1)+F(n-2)(n>=2 且n 为整数). Winder想知道的是当我们将这个递推式改为F(n)=AF(n-1)+BF(n-2)(n>=2且n为整数)时我们得到的是怎样的数列.但是,Winder很懒,所以只能由你来帮他来完成这件事. 注意,这里我们依然令F(0)=F(1)=1. ★数据输入 输入第一行三个正整数N,A 和B(N<=10:1<=A.B<…
思想启发来自, 罗博士的根据递推公式构造系数矩阵用于快速幂 对于矩阵乘法和矩阵快速幂就不多重复了,网上很多博客都有讲解.主要来学习一下系数矩阵的构造 一开始,最一般的矩阵快速幂,要斐波那契数列Fn=Fn-1+Fn-2的第n项,想必都知道可以构造矩阵来转移 其中,前面那个矩阵就叫做系数矩阵(我比较喜欢叫转移矩阵) POJ3070 Fibonacci 可以试一试 #include<cstdio> typedef long long ll; ; struct Mar{ int r,c; ll a[]…