网易公开课,第4课 notes,http://cs229.stanford.edu/notes/cs229-notes1.pdf 前面介绍一个线性回归问题,符合高斯分布 一个分类问题,logstic回归,符合伯努利分布 也发现他们有些相似的地方,其实这些方法都是一个更广泛的模型族的特例,这个模型族称为,广义线性模型(Generalized Linear Models,GLMs) The exponential family 为了介绍GLMs,先需要介绍指数族分布(exponential fami…
上节课我们主要介绍了解决线性分类问题的一个简单的方法:PLA.PLA能够在平面中选择一条直线将样本数据完全正确分类.而对于线性不可分的情况,可以使用Pocket Algorithm来处理.本节课将主要介绍一下机器学习有哪些种类,并进行归纳. 一.Learning with Different Output Space Y(根据输入空间变化划分) 银行根据用户个人情况判断是否给他发信用卡的例子,这是一个典型的二元分类(binary classification)问题.也就是说输出只有两个,一般y=…
上节课介绍了机器学习可以分为不同的类型.其中,监督式学习中的二元分类和回归分析是最常见的也是最重要的机器学习问题.本节课,我们将介绍机器学习的可行性,讨论问题是否可以使用机器学习来解决. 一.Learning is Impossible 首先,考虑这样一个例子,如下图所示,有3个label为-1的九宫格和3个label为+1的九宫格.根据这6个样本,提取相应label下的特征,预测右边九宫格是属于-1还是+1?结果是,如果依据对称性,我们会把它归为+1:如果依据九宫格左上角是否是黑色,我们会把它…
机器学习分为四步: When Can Machine Learn? Why Can Machine Learn? How Can Machine Learn? How Can Machine Learn Better? 一.What is Machine Learning Q:什么是“学习”? A:学习就是人类通过观察.积累经验,掌握某项技能或能力.就好像我们从小学习识别字母.认识汉字,就是学习的过程. 机器学习(Machine Learning),顾名思义,就是让机器(计算机)也能向人类一样,…
原文地址:http://www.jianshu.com/p/5b4a64874650 问题描述 程序实现 # coding: utf-8 import numpy as np import matplotlib.pyplot as plt import time def read_data(dataFile): with open(dataFile, 'r') as file: data_list = [] for line in file.readlines(): line = line.st…