首页
Python
Java
IOS
Andorid
NodeJS
JavaScript
HTML5
【
BZOJ.5289.[AHOI/HNOI2018]排列(贪心 heap)
】的更多相关文章
BZOJ.5289.[AHOI/HNOI2018]排列(贪心 heap)
BZOJ LOJ 洛谷 \(Kelin\)写的挺清楚的... 要求如果\(a_{p_j}=p_k\),\(k\lt j\),可以理解为\(k\)要在\(j\)之前选. 那么对于给定的\(a_j=k\),我们可以连边\(k\to j\)建一张图.如果图有环,那么无解:否则这是一棵以\(0\)为根的树. 限制就变成了,选一个点前必须要选其父亲:如果第\(k\)个选点\(i\),\(i\)的贡献是\(k\cdot w_i\). 然后怎么做呢... 假设当前最小的数是\(x\),那么如果\(fa[x]\…
BZOJ.5288.[AHOI/HNOI2018]游戏(思路 拓扑)
BZOJ LOJ 洛谷 考虑如何预处理每个点能到的区间\([l,r]\). 对于\(i,i+1\)的一扇门,如果钥匙在\(i\)的右边,连边\(i\to i+1\),表示从\(i\)出发到不了\(i+1\):否则连边\(i+1\to i\).没有门的话就缩成一个点. 如果存在边\(i\to j\),那么\(j\)的区间包含\(i\),而\(i\)肯定不包含\(j\).从无入度的点暴力扩展,对于它能到的点用它更新一下然后再暴力扩展,复杂度是\(O(n)\)的. 还有一种做法是这个,感觉也有些妙,复…
BZOJ.5290.[AHOI/HNOI2018]道路(树形DP)
BZOJ LOJ 洛谷 老年退役选手,都写不出普及提高DP= = 在儿子那统计贡献,不是在父亲那统计啊!!!(这样的话不写这个提高DP写记忆化都能过= =) 然后就令\(f[x][a][b]\)表示在\(x\)节点上面有\(a\)条不修的公路\(b\)条不修的铁路的最小花费,在叶节点处统计贡献,转移的时候枚举不修哪个即可. 对于\(f\)数组第一维可以卡卡空间,把不用的标号回收,同一时刻只会有\(80+\)个有用节点. 注意如果叶子节点设成负值,用数组\(id[x]\)的时候要注意!!!(访问数…
BZOJ.5287.[AHOI HNOI2018]毒瘤(虚树 树形DP)
BZOJ LOJ 洛谷 设\(f[i][0/1]\)表示到第\(i\)个点,不选/选这个点的方案数.对于一棵树,有:\[f[x][0]=\prod_{v\in son[x]}(f[v][0]+f[v][1])\\f[x][1]=\prod_{v\in son[x]}f[v][0]\] 对于非树边的限制,可以再加一维非树边端点的状态(选没选),能得\(55\)分. 对于一条非树边\((u,v)\),要么是\(u\)选\(v\)不选,要么是\(u\)不选\(v\)选,要么是\(u\)不选\(v\)不…
BZOJ.5285.[AHOI/HNOI2018]寻宝游戏(思路 按位计算 基数排序..)
BZOJ LOJ 洛谷 话说vae去年的专辑就叫寻宝游戏诶 只有我去搜Mystery Hunt和infinite corridor了吗... 同样按位考虑,假设\(m=1\). 我们要在一堆\(01\)中填\(\&\)和\(|\).注意到对于任意数\(x\),\(x\&0=0\),\(x\&1=x\),\(x|0=x\),\(x|1=1\).也就是\(\&1\)和\(|0\)没有影响,而\(\&0\)和\(|1\)相当于直接赋值. 如果要求最后结果是\(1\),那我…
BZOJ.5286.[AHOI/HNOI2018]转盘(线段树)
BZOJ LOJ 洛谷 如果从\(1\)开始,把每个时间\(t_i\)减去\(i\),答案取决于\(\max\{t_i-i\}\).记取得最大值的位置是\(p\),答案是\(t_p+1+n-1-p=\max\{t_i-i\}+1+n-1\). 把环拆成链,每次询问就可以\(O(n)\)求了(滑动窗口). 考虑怎么维护答案:\(\min\limits_{i=1}^n\{\max\limits_{j=i}^{i+n-1}\{t_j-j\}+i\}+n-1\). 放宽一下条件,即\(Ans=\min\…
5289: [Hnoi2018]排列
5289: [Hnoi2018]排列 链接 分析: 首先将题意转化一下:每个点向a[i]连一条边,构成了一个以0为根节点的树,要求选一个拓扑序,点x是拓扑序中的第i个,那么价值是i*w[x].让价值最大. 然后贪心:直观的考虑,应该让权值小的尽量靠前,那么依次考虑当前最小的权值,一旦选了它的父节点,那么下一个就会选它.将它和父节点合并,新的权值为平均数,并且记录下siz.推广一下即每次选平均数最小的集合,和父节点所在的集合合并. 证明:如果当前有两个集合x,y,如果x在前面更优,那么$w[x]…
【BZOJ5289】[HNOI2018]排列(贪心)
[BZOJ5289][HNOI2018]排列(贪心) 题面 BZOJ 洛谷 题解 这个限制看起来不知道在干什么,其实就是找到所有排列\(p\)中,\(p_k=x\),那么\(k<j\),其中\(a[p_j]=x\). 也就是对于\(a\)数组的每个数\(a[i]\),它必须放在所有\(a[x]=i\)的前面. 那么对于\(i\)向所有满足\(a[x]=i\)的位置\(x\)连边,表示\(i\)必须放在这些数前面. 如果成环必定无解,如果无环则图是森林. 现在考虑每次从度数为\(0\)的点中选一个…
loj #2509. 「AHOI / HNOI2018」排列
#2509. 「AHOI / HNOI2018」排列 题目描述 给定 nnn 个整数 a1,a2,…,an(0≤ai≤n),以及 nnn 个整数 w1,w2,…,wn.称 a1,a2,…,an 的一个排列 ap[1],ap[2],…,ap[n] 为 a1,a2,…,an 的一个合法排列,当且仅当该排列满足:对于任意的 kkk 和任意的 jjj,如果 j≤kj \le kj≤k,那么 ap[j]a_{p[j]}ap[j] 不等于 p[k]p[k]p[k].(换句话说就是:对于任意的 kk…
Loj #2495. 「AHOI / HNOI2018」转盘
Loj #2495. 「AHOI / HNOI2018」转盘 题目描述 一次小 G 和小 H 原本准备去聚餐,但由于太麻烦了于是题面简化如下: 一个转盘上有摆成一圈的 \(n\) 个物品(编号 \(1\) 至 \(n\))其中第 \(i\) 个物品会在 \(T_i\) 时刻出现. 在 \(0\) 时刻时,小 G 可以任选 \(n\) 个物品中的一个,我们将其编号记为 \(s_0\).并且如果 \(i\) 时刻选择了物品 \(s_i\),那么 \(i + 1\) 时刻可以继续选择当前 物品或者选择…