win操作系统段和分页机制】的更多相关文章

第16章讲的是分页机制和动态页面分配的问题,说实话这个一开始接触是会把人绕晕的,但是这个的确太重要了,有了分页机制内存管理就变得很简单,而且能直接实现平坦模式. ★PART1:Intel X86基础分页机制 1. 页目录.页表和页 首先先要明白分页是怎么来的,简单来讲,分页其实就是内存块的映射管理.在我们之前的章节中,我们都是使用的分段管理模式,处理器中负责分段的部件是段部件,段管理机制是Intel处理器最基本的处理机制,在任何时候都是无法关闭的.而当开启了分页管理之后,处理器会把4GB的内存分…
1.分段机制 80386的两种工作模式  80386的工作模式包括实地址模式和虚地址模式(保护模式).Linux主要工作在保护模式下. 分段机制  在保护模式下,80386虚地址空间可达16K个段,每段大小可变,最大达4GB.  从逻辑地址到线性地址的转换由80386分段机制管理.段寄存器CS.DS.ES.SS.FS或GS标识一个段.这些段寄存器作为段选择器,用来选择该段的描述符. 分段逻辑地址到线性地址转换图  图9_7 分段逻辑地址到线性地址转换图 2. 分页机制 分页机制的作用  分页机制…
在上一篇文章Linux内存寻址之分段机制中,我们了解逻辑地址通过分段机制转换为线性地址的过程.下面,我们就来看看更加重要和复杂的分页机制. 分页机制在段机制之后进行,以完成线性—物理地址的转换过程.段机制把逻辑地址转换为线性地址,分页机制进一步把该线性地址再转换为物理地址. 硬件中的分页 分页机制由CR0中的PG位启用.如PG=1,启用分页机制,并使用本节要描述的机制,把线性地址转换为物理地址.如PG=0,禁用分页机制,直接把段机制产生的线性地址当作物理地址使用.分页机制管理的对象是固定大小的存…
一 分段机制 1.什么是分段机制 分段机制就是把虚拟地址空间中的虚拟内存组织成一些长度可变的称为段的内存块单元. 2.什么是段 每个段由三个参数定义:段基地址.段限长和段属性. 段的基地址.段限长以及段的保护属性存储在一个称为段描述符的结构项中. 3.段的作用  段可以用来存放程序的代码.数据和堆栈,或者用来存放系统数据结构. 4.段的存储地址 系统中所有使用的段都包含在处理器线性地址空间中. 5.段选择符 逻辑地址包括一个段选择符或一个偏移量,段选择符是一个段的唯一标识,提供了段描述符表,段描…
1 页式管理 1.1 分段机制存在的问题 分段,是指将程序所需要的内存空间大小的虚拟空间,通过映射机制映射到某个物理地址空间(映射的操作由硬件完成).分段映射机制解决了之前操作系统存在的两个问题: 地址空间没有隔离 程序运行的地址不确定 不过分段方法存在一个严重的问题:内存的使用效率低. 分段的内存映射单位是整个程序:如果内存不足,被换入换出到磁盘的空间都是整个程序的所需空间,这会造成大量的磁盘访问操作,并且严重降低了运行速度. 事实上,很多时候程序运行所需要的数据只是很小的一部分,加入到内存的…
1 分页机制 在虚拟内存中,页表是个映射表的概念, 即从进程能理解的线性地址(linear address)映射到存储器上的物理地址(phisical address). 很显然,这个页表是需要常驻内存的东西, 以应对频繁的查询映射需要(实际上,现代支持VM的处理器都有一个叫TLB的硬件级页表缓存部件,本文不讨论). 1.1 为什么使用多级页表来完成映射 但是为什么要使用多级页表来完成映射呢? 用来将虚拟地址映射到物理地址的数据结构称为页表, 实现两个地址空间的关联最容易的方式是使用数组, 对虚…
Linux分页机制之分页机制的演变--Linux内存管理(七) 2016年09月01日 20:01:31 JeanCheng 阅读数:4543 https://blog.csdn.net/gatieme/article/details/52402967 ~   版权声明:本文为博主原创文章 && 转载请著名出处 @ http://blog.csdn.net/gatieme https://blog.csdn.net/gatieme/article/details/52402967 日期 内…
Linux分页机制之概述--Linux内存管理(六) 2016年09月01日 19:46:08 JeanCheng 阅读数:5491 标签: linuxkernel内存管理分页架构更多 个人分类: ┈┈[理解Linux内存管理] https://blog.csdn.net/gatieme/article/details/52402861 全系列 非常好 就是自己学习不会..      版权声明:本文为博主原创文章 && 转载请著名出处 @ http://blog.csdn.net/gati…
前言 本文涉及的硬件平台是X86,如果是其他平台的话,如ARM,是会使用到MMU,但是没有使用到分段机制: 最近在学习Linux内核,读到<深入理解Linux内核>的内存寻址一章.原本以为自己对分段分页机制已经理解了,结果发现其实是一知半解.于是,查找了很多资料,最终理顺了内存寻址的知识.现在把我的理解记录下来,希望对内核学习者有一定帮助,也希望大家指出错误之处. 分段到底是怎么回事 相信学过操作系统课程的人都知道分段分页,但是奇怪的是书上基本没提分段分页是怎么产生的,这就导致我们知其然不知其…
地址长度 在Linux下,unsigned long可以与地址的长度保持一致,即32位系统下unsigned long为32位,而64位系统下为64位长. 虚拟地址的分解 如图所示,通过XXX_SHIFT方式,移位得到范围. 1: /* PAGE_SHIFT determines the page size */ 2: #define PAGE_SHIFT 12 3: #define PAGE_SIZE (_AC(1,UL) << PAGE_SHIFT) // 4KB = 4096 4: #d…
分页是现在CPU核心的管理内存方式,网上介绍材料很多,这里不赘述,简单介绍一下分页的背景和原理 1.先说说为什么要分段 实模式下程序之间不隔离,互相能直接读写对方内存,或跳转到其他进程的代码运行,导致泄密.出错,通过分段隔离不同程序代码对不同内存单元的读写权限: 用户程序在内存种加载的地址不确定,通过分段对程序的数据.代码重定位,才能在运行时正确寻址(如果没有特殊声明,编译器编译后生成文件的代码和数据都是相对文件头开始计算偏移的) 2.再说说为什么要分页?   物理内存是有限的,主流普通PC机内…
1 今日内容(分页机制初始化) 在初始化内存的结点和内存区域之前, 内核先通过pagging_init初始化了内核的分页机制. 在分页机制完成后, 才会开始初始化系统的内存数据结构(包括内存节点数据和内存区域), 并在随后初始化buddy伙伴系统来接管内存管理的工作 2 分页机制初始化 arm64架构下, 内核在start_kernel()->setup_arch()中通过arm64_memblock_init( )完成了memblock的初始化之后, 接着通过setup_arch()->pa…
背景 : 在此文章里会从分页分段机制去解析Linux内存管理系统如何工作的,由于Linux内存管理过于复杂而本人能力有限.会尽量将自己总结归纳的部分写清晰. 从实模式到保护模式的寻址方式的不同 : 16位CPU的寻址方式 : 在 8086 CPU 中,提供了两类寄存器来进行寻址,分别为段寄存器(例如 CS,DS,SS)和段偏移寄存器(例如 SI,DI,SP).而这几种寄存器的长度都为16bit,寻址方式也很简单 : cs:ip = (cs << 4 + ip).也就是说 cs寄存器的值左移4位…
虚拟地址到物理地址 虚拟地址空间就是32位系统的那4GB,这4GB空间的地址称为虚拟地址.虚拟地址经过分段机制后转化为线性地址,一般虚拟地址都等于线性地址,因为大多数段寄存器的基地址都为0,只有FS段寄存器的基地址不会0.线性地址经过分页机制最终映射到物理地址上. 页目录表,页表 页目录表实际是特殊的页表,普通的页表的页表项都指向物理页,而页目录表的页目录项指向的是其他页表. CR3寄存器中前20位存储的是页目录表的物理基地址,每个进程的CR3都不同,也就是每一个进程都有自己的一套页表. 页目录…
      在内核里分配内存可不像在其他地方分配内存那么容易.造成这种局面的因素很多.从根本上讲,是因为内核本身不能像用户空间那样奢侈的使用内存.内核与用户空间不同,它不具备这种能力,它不支持简单便捷的内存分配方式.比如,内核一般不能睡眠.此外,处理内存分配错误对于内核来说也绝非是一件简单的事.正式由于这些限制,再加上内存分配机制不能太复杂,所以在内核中获取内存要比在用户空间复杂的多.       首先,我们讨论下内核中的分页机制.       内核把物理页作为内存管理的基本单位.尽管处理器的最…
C#实现的内存分页机制的一个实例 //多页索引表管理类(全局主索引表管理类) public class MuliPageIndexFeatureClass : IDisposable { protected List<IndexPageClass> MuliPageIndexTable = new List<IndexPageClass>(); //多页索引表对象 // protected int CurrentMemoryPageIndex = -1; //当前内存索引页(已载入…
Linux采用了通用的四级分页机制,所谓通用就是指Linux使用这种分页机制管理所有架构的分页模型,即便某些架构并不支持四级分页.对于常见的x86架构,如果系统是32位,二级分页模型就可满足系统需求:如果32位系统采用PAE(物理地址扩展)模式,Linux使用三级分页模型:如果是64位系统,Linux使用四级分页模型,也就是说x86架构的分页模型可能是二级.三级或四级. 1.三级分页模型 Linux虚拟内存三级管理由以下三级组成. PGD: Page Global Directory(页目录)…
1 linux的分页机制 1.1 四级分页机制 前面我们提到Linux内核仅使用了较少的分段机制,但是却对分页机制的依赖性很强,其使用一种适合32位和64位结构的通用分页模型,该模型使用四级分页机制,即 页全局目录(Page Global Directory) 页上级目录(Page Upper Directory) 页中间目录(Page Middle Directory) 页表(Page Table) 页全局目录包含若干页上级目录的地址: 页上级目录又依次包含若干页中间目录的地址: 而页中间目录…
x86下的分页机制有一个特点:PAE模式 PAE模式 物理地址扩展,是基于x86 的服务器的一种功能,它使运行 Windows Server 2003, Enterprise Edition 和 Windows Server 2003,Datacenter Edition 的计算机可以支持4GB 以上物理内存.物理地址扩展 (PAE) 允许将最多64GB 的物理内存用作常规的4 KB 页面,并扩展内核能使用的位数以将物理内存地址从32扩展到36. 控制寄存器与分页机制相关的标志位 未开启PAE模…
5.3 Combining Segment and Page Translation  联合使用段与分页转换 Figure 5-12 combines Figure 5-2 and Figure 5-9 to summarize both phases of the transformation from a logical address to a physical address when paging is enabled. By appropriate choice of options…
描述 这两个标题在第一个标题的页中,且两个标题都没有独立分页.要让每一个标题独立分页,需要对标题的格式进行修改. 段前分页指的是标题与标题之间不在同一个页中,每一个标题都在独立的页中. 设置段前分页 "开始"选项卡--"样式"组: 设置完成之后,标题一与标题一各占一个页.…
前置知识: 分段的概念(当然手写过肯定是坠吼的 为什么要分页 当我们写程序的时候,总是倾向于把一个完整的程序分成最基本的数据段,代码段,栈段.并且普通的分段机制就是在进程所属的LDT中把每一个段给标识出来.但是在实际运用中,大多数进程不会无限地运行下去.当进程结束之后它占有的内存空间也会被释放.但是这样就会出现一个问题:内存碎片导致的内存使用效率低下 当进程A准备载入内存的时候,实际上内存的总剩余空间是足够放下的.但是进程A中的蓝色段无法直接放入内存中(假设这一段是代码段).也就是说我们必须等待…
一.概念 物理地址(physical address)用于内存芯片级的单元寻址,与处理器和CPU连接的地址总线相对应.——这个概念应该是这几个概念中最好理解的一个,但是值得一提的是,虽然可以直接把物理地址理解成插在机器上那根内存本身,把内存看成一个从0字节一直到最大空量逐字节的编号的大数组,然后把这个数组叫做物理地址,但是事实上,这只是一个硬件提供给软件的抽像,内存的寻址方式并不是这样.所以,说它是“与地址总线相对应”,是更贴切一些,不过抛开对物理内存寻址方式的考虑,直接把物理地址与物理的内存一…
3.系统机制 微软提供了一些基本组件让内核模式的组件使用: 1.陷阱分发,包括终端,延迟的过程调用(DPC),异步过程调用(APC),异常分发以及系统服务分发 2.执行体对象管理器 3.同步,包括自旋锁,内核分发器对象,以及等待是如何实现的. 4.系统辅助线程 5.其他的机制,比如Windows全局标记 6.本地过程调用 7.内核事件跟踪 8.Wow64 3.系统机制 3.1陷阱分发 3.1.1 中断分发 3.1.1.1 硬件中断 3.1.1.2 软中断请求级别(IRQL) 3.1.1.3 软中…
按发送路径来看,可分为直接通信和间接通信. 1. 直接通信 (1)进程必须正确的命名对方 send (P, message) – 发送信息到进程P receive(Q, message) – 从进程 Q接受消息 (2)通信链路的属性 自动建立链路 一条链路恰好对应一对通信进程 每对进程之间只有一个链接存在 链接可以是单向的,但通常为双向的 2. 间接通信 (1)通过操作系统维护的消息队列实现进程间的消息接收和发送 每个消息队列都有一个唯一的标识 只有共享了相同消息队列的进程,才能够通信 (2)通…
我们知道,Ibatis为我们提供了可以直接实现分页的方法 queryForList(String statementName, Object parameterObject, int skipResults, int maxResults) 参数: statementName :要调用的statement parameterObject: 参数对象 skipResults    :要查询的起始记录   ((page.getPageNo()-1)*page.getPageSize()) maxRe…
前台easyui 的datagrid中设置分页属性: pagination:true,//显示分页 pagePosition:'bottom',//分页栏位置 both 上下 bottom.top pageList:[12,24,36]//分页数据大小 后台java代码中 int page ,int rows写set. get方法. page = Integer.parseInt(request.getParameter("page")); rows = Integer.parseIn…
10-10-12分页限制 10-10-12分页因为页表PEB只有四个字节所以只能访问2^32 = 4GB物理地址空间,现在的物理内存都大于4GB为了能访问到更多的物理内存2-9-9-12将PEB的大小增加到了8个字节,其中36位用来表示物理页基地址,这样就可以访问到2^36 = 64GB物理地址空间.因为一个物理页大小一般为4kb,为了增加页表中PEB的大小,所以页表长度就减小了(10减到9). 2-9-9-12分页 线性地址的2是页目录指针表PDTPT的索引,9是页目录表PDT的索引,下一个9…
转载自 Windows系统机制之对象管理器 设计的几个目的: 提供一种公共统一的机制来使用系统资源 将对象保护隔离到OS中的一个地方,从而确保统一的一致的对象访问策略 提供一种机制来管理进程对对象的使用 支持各种OS环境需求,比如一个进程能够从父进程继承资源 建立统一的规则来维护对象的保持力 提供为特定的会话隔离对象的能力,以便在命名空间中允许局部和全局对象并存 对象接口 Windows 提供了执行以下任务的函数: 创建对象 获取对象句柄 获取有关对象的信息 设置有关对象的信息 关闭对象句柄 销…