机器学习 Hidden Markov Models 2】的更多相关文章

Introduction 通常,我们对发生在时间域上的事件希望可以找到合适的模式来描述.考虑下面一个简单的例子,比如有人利用海草来预测天气,民谣告诉我们说,湿漉漉的海草意味着会下雨,而干燥的海草意味着会天晴,而如果海草不是很湿也不是很干燥,比如潮湿的状态,那么我们恐怕很难断定天气会怎样,可能下雨也可能天晴,我们或许可以根据昨天的天气来进行判断,根据昨天的天气和今天海草的状态,或许可以有一个更好的预测. 上面介绍的预测系统,就是我们接下来要探讨的模型的一个典型例子.在这个教程中,我们主要探讨以下几…
Hidden Markov Models 下面我们给出Hidden Markov Models(HMM)的定义,一个HMM包含以下几个要素: ∏=(πi)表示初始状态的向量.A={aij}状态转换矩阵,里面的元素表示概率:Pr(xki|xk−1j)B={bij}confusion矩阵,表示可观察变量与隐藏变量的转换概率:Pr(yi)|Pr(xj) 值得注意的一点是,这里面定义的概率都是与时间不相关的,意味着这些概率不会随着时间的变化而变化,这一点假设与实际情况不符合,但是将问题大大简化了. 如果…
Viterbi Algorithm 前面我们提到过,HMM的第二类问题是利用HMM模型和可观察序列寻找最有可能生成该观察序列的隐藏变量的序列.简单来说,第一类问题是通过模型计算生成观察序列的概率,而第二类问题通过观察序列计算最有可能生成该观察序列的的隐藏变量的序列.我们还是先来看如下一张图: 我们希望找到生成该观察序列的概率最高的一个隐藏变量的序列.换句话说,我们想要最大化如下的式子: maxPr(observed sequence | hidden state combination) 一种简…
链接汇总 http://www.csie.ntnu.edu.tw/~u91029/HiddenMarkovModel.html 演算法笔记 http://read.pudn.com/downloads133/doc/fileformat/568756/HMM-DL.pdf本文讲述了 HMM原理,方法,典型应用 http://www.cnblogs.com/tsingke/p/3923169.html  HMM(隐马尔科夫模型)基本原理及其实现 http://wenku.baidu.com/lin…
主讲人 张巍 (新浪微博: @张巍_ISCAS) 软件所-张巍<zh3f@qq.com> 19:01:27 我们开始吧,十三章是关于序列数据,现实中很多数据是有前后关系的,例如语音或者DNA序列,例子就不多举了,对于这类数据我们很自然会想到用马尔科夫链来建模: 例如直接假设观测数据之间服从一阶马尔科夫链,这个假设显然太简单了,因为很多数据时明显有高阶相关性的,一个解决方法是用高阶马尔科夫链建模: 但这样并不能完全解决问题 :1.高阶马尔科夫模型参数太多:2.数据间的相关性仍然受阶数限制.一个好…
转自:http://blog.csdn.net/eaglex/article/details/6418219 隐马尔科夫模型(Hidden Markov Models) 定义 隐马尔科夫模型可以用一个三元组(π,A,B)来定义: π 表示初始状态概率的向量 A =(aij)(隐藏状态的)转移矩阵P(Xit|Xj(t-1))t-1时刻是j而t时刻是i的概率 B =(bij)混淆矩阵 P(Yi|Xj)在某个时刻因隐藏状态为Xj而观察状态为Yi的概率 值得注意的是,在状态转移矩阵中的每个概率都是时间无…
循序渐进的学习步骤是: Markov Chain --> Hidden Markov Chain --> Kalman Filter --> Particle Filter Markov不仅是一种技术,更是一种人生哲理,能启发我们很多. 一个信息爆炸的时代 一.信息的获取 首先要获得足够多的信息以及训练数据,才能保证所得信息中包含足够有价值的部分.但往往因为“面子”.“理子”.“懒"等原因,在有意无意间削弱了信息的获取能力. 二.信息的提取 信息中包含噪声,噪声中充斥着“有意无…
Andrew Ng CS229 讲义: https://pan.baidu.com/s/12zMYBY1NLzkluHNeMNO6MQ HMM模型常用于NLP.语音等领域. 马尔科夫模型(Markov Model) 只有状态序列z.状态转移矩阵A. 有限视野假设(limited horizon assumption),Markov性: 静态过程假设(stationary process assumption),参数时不变性: 两个问题:1)概率问题,2)学习问题 问题1)概率问题:已知转移矩阵A…
转自:http://blog.csdn.net/eaglex/article/details/6458541 维特比算法(Viterbi Algorithm) 找到可能性最大的隐藏序列 通常我们都有一个特定的HMM,然后根据一个可观察序列去找到最可能生成这个可观察序列的隐藏序列. 1.穷举搜索 我们可以在下图中看到每个状态和观察的关系. 通过计算所有可能的隐藏序列的概率,我们可以找到一个可能性最大的隐藏序列,这个可能性最大的隐藏序列最大化了Pr(observed sequence | hidde…
转自:http://blog.csdn.net/eaglex/article/details/6430389 前向算法(Forward Algorithm) 一.如果计算一个可观察序列的概率?   1.穷举搜索 加入给定一个HMM,也就是说(,A,B)这个三元组已知,我们想计算出某个可观察序列的概率.考虑天气的例子,我们知道一个描述天气和海藻状态的HMM,而且我们还有一个海藻状态的序列.假设这个状态中的某三天是(dry,damp,soggy),在这三天中的每一天,天气都可能是晴朗,多云或者下雨,…