卷积神经网络(CNN)可以很好的处理二维平面图像的问题.然而,对球面图像进行处理需求日益增加.例如,对无人机.机器人.自动驾驶汽车.分子回归问题.全球天气和气候模型的全方位视觉处理问题. 将球形信号的平面投影作为卷积神经网络的输入的这种Too Naive做法是注定要失败的,Cnns的巨大成就来源于局部感受野的权值共享,而多层结构总能找到不同rect的相同目标,给出响应.而对于球形图像,一个目标在图片的不同位置是发生形变的,若要使用CNNs直接共享,构建的局部感受野理应描述这种转换.如下图所示,而…
传送门 ☞轮子的专栏 ☞转载请注明 ☞ http://blog.csdn.net/leverage_1229 介绍 本指南将介绍一个PanoramaGL 0.1类库的简单用法,更多的细节请签出 HelloPanoramaGL示例查看. 细节 1如何导入PanoramaGL类库? 1.1从源代码中导入 (1)下载PanoramaGL_0.1.zip或从代码仓库下载源代码 (2)如果你下载zip文件然后解压该文件 (3)在Eclipse中导入PanoramaGL项目:     点击“File”选择“…
4.4特殊应用:人脸识别和神经网络风格转换 觉得有用的话,欢迎一起讨论相互学习~Follow Me 4.11一维和三维卷积 二维和一维卷积 对于2D卷积来说,假设原始图像为\(14*14*3\)的三通道图像,使用32个\(5*5*3\)的卷积核(其中3表示通道数,一般只关注感受野的大小,而卷积核的深度大小与输入的通道数相同)进行卷积,则得到大小为\(10*10*32\)大小的特征图. 对于1D卷积而言,假设原始图像为\(14*1\)的单通道灰度图像,使用16个\(5*1*1\)的卷积核(因为处理…
Opencv中自带的Stitcher类可以实现全景图像,效果不错.下边的例子是Opencv Samples中的stitching.cpp的简化,源文件可以在这个路径里找到: \opencv\sources\samples\cpp\stitching.cpp #include <fstream> #include "opencv2/highgui/highgui.hpp" #include "opencv2/stitching/stitcher.hpp"…
ICLR18 best paper: Spherical CNNs 论文链接:https://arxiv.org/abs/1801.10130 GITHUB地址:https://github.com/jonas-koehler/s2cnn 中文讲解地址: https://www.zhihu.com/question/68713342 https://zhuanlan.zhihu.com/p/34042888 简介: In this paper we introduce the building…
作者:szx_spark 由于计算机视觉的大红大紫,二维卷积的用处范围最广.因此本文首先介绍二维卷积,之后再介绍一维卷积与三维卷积的具体流程,并描述其各自的具体应用. 1. 二维卷积 图中的输入的数据维度为\(14\times 14\),过滤器大小为\(5\times 5\),二者做卷积,输出的数据维度为\(10\times 10\)(\(14-5+1=10\)).如果你对卷积维度的计算不清楚,可以参考我之前的博客吴恩达深度学习笔记(deeplearning.ai)之卷积神经网络(CNN)(上)…
最近在学习过程中发现opencv有了很多变动, OpenCV 官方的 Python tutorial目前好像还没有改过来,导致大家在学习上面都出现了一些问题,现在做一个小小的罗列,希望对大家有用 做的是关于全景图像的拼接,关于sift和surf的语法之后有需要会另开文章具体阐述,此篇主要是解决大家困惑许久的问题. 笔者python3.x 首先是安装上,必须先后安装pip install opencv_python和pip install opencv-contrib-python==3.3.0.…
摘要:近日,CVPR 2022放榜,基于CANN的AI论文<Interactive Image Synthesis with Panoptic Layout Generation>强势上榜. 本文分享自华为云社区<昇腾CANN论文上榜CVPR,全景图像生成算法交互性再增强!>,作者:昇腾CANN . 近日,CVPR 2022放榜,基于CANN的AI论文<Interactive Image Synthesis with Panoptic Layout Generation>…
摘要:本篇文章结合灰度三维图像讲解图像顶帽运算和图像黑猫运算,通过Python调用OpenCV函数实现. 本文分享自华为云社区<[Python图像处理] 十三.基于灰度三维图的图像顶帽运算和黑帽运算>,作者: eastmount. 本篇文章继续深入,结合灰度三维图像讲解图像顶帽运算和图像黑猫运算,通过Python调用OpenCV函数实现. 一.图像顶帽运算 图像顶帽运算(top-hat transformation)又称为图像礼帽运算,它是用原始图像减去图像开运算后的结果,常用于解决由于光照不…
参考: pnp问题 与 solvepnp函数:https://www.jianshu.com/p/b97406d8833c 对图片进行二维仿射变换cv2.warpAffine() or 对图片进行二维射影变换cv2.warpPerspective :https://www.jianshu.com/p/1c6512d475cc 关键:今天裁图过程中发现裁出来的一些图较正常图发生了奇怪的仿射变换,最后发现是solvepnp求解出的头部坐标系到摄像机坐标系的RT有错误,改用solvepnpRansac…
前言: 三维点云为三维欧式空间点的集合.对点云的形状描述若使用局部特征,则可分为两种:固定世界坐标系的局部描述和寻找局部主方向的局部描述,ROPS特征为寻找局部主方向的特征描述. 1.寻找主方向(对XYZ轴经过特定旋转)LFR: <1>.计算法线特征:这一步是非常耗计算量的,若达到可以接受的法线精度,此过程几乎占据了 整个计算过程的50%:可选择的方法有 使用空间树索引建立近邻域,对近邻平面拟合,平面的参数方向既是法线一个方向. <2>.进行多边形重建:利用贪婪投影的方法进行三角形…
Sift和Surf算法实现两幅图像拼接的过程是一样的,主要分为4大部分: 1. 特征点提取和描述 2. 特征点配对,找到两幅图像中匹配点的位置 3. 通过配对点,生成变换矩阵,并对图像1应用变换矩阵生成对图像2的映射图像 4. 图像2拼接到映射图像上,完成拼接 过程1.2.3没啥好说的了,关键看看步骤4中的拼接部分.这里先采用比较简单一点的拼接方式来实现: 1. 找到图像1和图像2中最强的匹配点所在的位置 2. 通过映射矩阵变换,得到图像1的最强匹配点经过映射后投影到新图像上的位置坐标 3. 在…
代码实现 概述 这是关于Texture Synthesis Using Convolutional Neural Networks论文的tensorflow2.0代码实现,使用keras预训练的VGG19模型,依照论文重新更改了vgg19的设置. 本实现在论文给出的纹理中基本能得到复现结果 环境 tensorflow >2.0 numpy Pillow matplotlib Usage python3 synthesize.py src.jpg --output output.jpg 文件 cu…
VR三维全景虚拟现实技术的应用,能够通过全方位互动式来还原真实场景,令人产生一种身临其境的感觉,由于三维全景虚拟现实技术具有一定应用优势,其在企业与院校展示.建筑规划展示.酒店宾馆展示等方面都逐步得到广泛应用.为缓解社会发展新时期传统实体展馆所面临的问题,探讨三维全景虚拟现实技术在虚拟展馆构建中的应用是非常必要的. 随着信息时代的到来,科学技术快速发展,三维全景虚拟现实技术应运而生,作为虚拟现实的分支之一,其在网络三维业务中发挥着不可替代的作用.全景技术是运用数码照相机于固定视点依照某种方式拍摄…
线性滤波可以说是图像处理最基本的方法,它可以允许我们对图像进行处理,产生很多不同的效果.做法很简单.首先,我们有一个二维的滤波器矩阵(有个高大上的名字叫卷积核)和一个要处理的二维图像.然后,对于图像的每一个像素点,计算它的邻域像素和滤波器矩阵的对应元素的乘积,然后加起来,作为该像素位置的值.这样就完成了滤波过程. 对图像和滤波矩阵进行逐个元素相乘再求和的操作就相当于将一个二维的函数移动到另一个二维函数的所有位置,这个操作就叫卷积或者协相关.卷积和协相关的差别是,卷积需要先对滤波矩阵进行180的翻…
我是做Tracking 的,对于速度要求非常高.发现傅里叶变换能够使用. 于是学习之. 核心: 最根本的一点就是将时域内的信号转移到频域里面.这样时域里的卷积能够转换为频域内的乘积! 在分析图像信号的频率特性时,对于一幅图像,直流分量表示预想的平均灰度.低频分量代表了大面积背景区域和缓慢变化部分,高频部分代表了它的边缘,细节,跳跃部分以及颗粒噪声.  因此,我们能够做对应的锐化和模糊的处理:提出当中的高频分量做傅里叶逆变换得到的就是锐化的结果. 提出当中的低频分量做傅里叶逆变换得到的就是模糊的结…
第四周:卷积神经网络 part 3 视频学习 语义分割中的自注意力机制和低秩重建 语义分割(Semantic Segmentation) 概念:语义分割是在像素级别上的分类,属于同一类的像素都要被归为一类,因此语义分割是从像素级别来理解图像的. 思路: 传统方法: TextonForest和基于随机森林分类器等语义分割方法 深度学习方法: Patch classification 全卷积方法(FCN) encoder-decoder架构 空洞卷积(Dilated/Atrous) 条件随机场 几种…
一张鱼眼图或者6方图,展现出来的全景影像效果图 PanoramaGL PanoramaGL是世界上第一个开源的实现360度全景图像的iOS.Android类库.基于OpenGL 支持球,立方体,圆柱.有重力加速等. 很老的一个库了,但是效果做的非常棒,缺点就是非常耗内存,并且作者早已经不在维护了,bug非常多 https://code.google.com/p/panoramagl 本人在生产环境用了很久这个库,所以自己也fork了一个版本,修改了若干bug,满足基本使用 https://git…
在AI芯片:高性能卷积计算中的数据复用曾提到,基于变换域的卷积计算--譬如Winograd卷积--并不能适应算法上对卷积计算多变的需求.但Winograd卷积依旧出现在刚刚公开的ARM Ethos-N57和Ethos-N37 NPUs的支持特性中,本文将利用Nvidia开源的NVIDIA Deep Learning Accelerator (NVDLA)为例,分析在硬件中支持Winograd卷积的实现方式,代价和收益:以期对基于变换域卷积的优势和不足有更深的认识. 1. Windgrad卷积的计…
An Intuitive Explanation of Convolutional Neural Networks 原文地址:https://ujjwalkarn.me/2016/08/11/intuitive-explanation-convnets/comment-page-4/?unapproved=31867&moderation-hash=1ac28e426bc9919dc1a295563f9c60ae#comment-31867 一.什么是卷积神经网络.为什么卷积神经网络很重要? 卷…
CVPR2020:三维实例分割与目标检测 Joint 3D Instance Segmentation and Object Detection for Autonomous Driving 论文地址: http://openaccess.thecvf.com/content_CVPR_2020/papers/Zhou_Joint_3D_Instance_Segmentation_and_Object_Detection_for_Autonomous_Driving_CVPR_2020_pape…
VR元年已过,VR项目.VR创业潮转为理性,VR行业分为两个方向:硬件和内容. VR全景,又被称为3D实景,是一种新兴的富媒体技术,其与视频,声音,图片等传统的流媒体大的区别是"可操作,可交互".   一. 360度全景市场需要随着计算机技术的飞速发展,多媒体所包含的种类也越来越多,所能表现的效果也越来越多, 而一些比较传统的表现方式也越来越无法满足大部分客户对于展示方式的要求. 在传统的表现方式中,展示的手段无非是静态的平面图片和动态的视频,也有进行三维全景进行展示的. 静态图片只能…
声明: 1. 我和每一个应该看这篇博文的人一样,都是初学者,都是小菜鸟,我发布博文只是希望加深学习印象并与大家讨论. 2. 我不确定的地方用了"应该"二字 首先,通俗说一下,CNN的存在是为了解决两个主要问题: 1. 权值太多.这个随便一篇博文都能解释 2. 语义理解.全连接网络结构处理每一个像素时,其相邻像素与距离很远的像素无差别对待,并没有考虑图像内容的空间结构.换句话说,打乱图像像素的输入顺序,结果不变. 然后,CNN中的卷积核的一个重要特点是它是需要网络自己来学习的.这一点很简…
图像拼接在实际的应用场景很广,比如无人机航拍,遥感图像等等,图像拼接是进一步做图像理解基础步骤,拼接效果的好坏直接影响接下来的工作,所以一个好的图像拼接算法非常重要. 再举一个身边的例子吧,你用你的手机对某一场景拍照,但是你没有办法一次将所有你要拍的景物全部拍下来,所以你对该场景从左往右依次拍了好几张图,来把你要拍的所有景物记录下来.那么我们能不能把这些图像拼接成一个大图呢?我们利用opencv就可以做到图像拼接的效果! 比如我们有对这两张图进行拼接. 从上面两张图可以看出,这两张图有比较多的重…
卷积神经网络(Convolutional Neural Network, CNN)是一种前馈神经网络, 在计算机视觉等领域被广泛应用. 本文将简单介绍其原理并分析Tensorflow官方提供的示例. 关于神经网络与误差反向传播的原理可以参考作者的另一篇博文BP神经网络与Python实现. 工作原理 卷积是图像处理中一种基本方法. 卷积核是一个nxn的矩阵通常n取奇数, 这样矩阵就有了中心点和半径的概念. 对图像中每个点取以其为中心的n阶方阵, 将该方阵与卷积核中对应位置的值相乘, 并用它们的和作…
# 手写数字识别 ----卷积神经网络模型 import os import tensorflow as tf #部分注释来源于 # http://www.cnblogs.com/rgvb178/p/6052541.html from tensorflow.examples.tutorials.mnist import input_data data = input_data.read_data_sets("/tmp/data/", one_hot=True) '''获取程序集'''…
什么是卷积神经网络呢?这个的确是比较难搞懂的概念,特别是一听到神经网络,大家脑海中第一个就会想到复杂的生物学,让人不寒而栗,那么复杂啊.卷积神经网络是做什么用的呢?它到底是一个什么东东呢? 卷积神经网络的灵感源一种生物进程,其中神经元之间的联结模式和动物视觉皮层组织非常相似.所以发明者把它叫做卷积神经网络.只是做了类比,没有生物学知识的同学不要怕,只要有良好的数学基础(这个也不是很容易喔). 下面看看各方神圣对CNN的概念的定义吧: 科学的说法: 卷积神经网络(Convolutional Neu…
今天刚刚得到消息,之前投给IROS 2017的文章收录了.很久很久没有写过博客,今天正好借这个机会来谈谈点云卷积网络的一些细节. 1.点云与三维表达 三维数据后者说空间数据有很多种表达方式,比如:RGB-D 图像,体素图像,三维点云等.这些三维数据的表达方式各有特点:RGB-D 图像可以直接从Kinect 读到,而且是规整的,适合直接用于现存的图像处理框架.体素图像更直观的展示物体的三维形貌,更直接的表达物体表面空间位置关系,同时,很容易将图像中成功的方法推广到体素图像中.而三维点云的表达更加紧…
网上关于卷积神经网络的相关知识以及数不胜数,所以本文在学习了前人的博客和知乎,在别人博客的基础上整理的知识点,便于自己理解,以后复习也可以常看看,但是如果侵犯到哪位大神的权利,请联系小编,谢谢.好了下面言归正传: 在深度学习领域中,已经经过验证的成熟算法,目前主要有深度卷积网络(DNN)和递归网络(RNN),在图像识别,视频识别,语音识别领域取得了巨大的成功,正是由于这些成功,能促成了当前深度学习的大热.与此相对应的,在深度学习研究领域,最热门的是AutoEncoder.RBM.DBN等产生式网…
输入模式与网络架构间的对应关系: 向量数据:密集连接网络(Dense层) 图像数据:二维卷积神经网络 声音数据(比如波形):一维卷积神经网络(首选)或循环神经网络 文本数据:一维卷积神经网络(首选)或循环神经网络 时间序列数据:循环神经网络(首选)或一维卷积神经网络 其他类型的序列数据:循环神经网络或一维卷积神经网络.如果数据顺序非常重要(比如时间序列,但文本不是),那么首选循环神经网络 视频数据:三维卷积神经网络(如果需要捕捉运动效果),或者帧级的二维神经网络(用于特征提取)+循环神经网络或一…