本节涉及点: 激活函数 sigmoid 产生随机训练数据 使用随机训练数据训练 加入偏移量b加快训练过程 进阶:批量生产随机训练数据 在前面的三好学生问题中,学校改变了评三好的标准 —— 总分>= 95,即可当三好.计算总分公式不变 —— 总分 = 德*0.6+智*0.3+体*0.1 但学校没有公布这些规则,家长们希望通过神经网络计算出学校的上述规则 这个问题显然不是线性问题,也就是无法用一个类似 y = w*x + b 的公式来从输入数据获得结果 虽然总分和各项成绩是线性关系,但总分与是否评比…
#————————————————————————本文禁止转载,禁止用于各类讲座及ppt中,违者必究————————————————————————# 前几天看到一个有意思的分享,大意是讲如何用Tensorflow教神经网络自动创造音乐.听起来好好玩有木有!作为一个Coldplay死忠粉,第一想法就是自动生成一个类似Coldplay曲风的音乐,于是,开始跟着Github上的教程(项目的名称:Project Magenta)一步一步做,弄了三天,最后的生成的音乐在这里(如果有人能告诉我怎么在博客里…
一.序言 前面已经逐步从单神经元慢慢“爬”到了神经网络并把常见的优化都逐个解析了,再往前走就是一些实际应用问题,所以在开始实际应用之前还得把“框架”翻出来,因为后面要做的工作需要我们将精力集中在业务而不是网络本身,所以使用框架可以减少非常多的工作量,有了前面自己实现神经网络的经验,现在理解框架的一些设置也比较容易了.本篇我们就使用比较常见的Tensorflow来重置一下前面的工作. 备注一下Tensorflow的安装: 1)安装python3.6,高版本不支持 2)pip install ten…
一文学会用 Tensorflow 搭建神经网络 本文转自:http://www.jianshu.com/p/e112012a4b2d 字数2259 阅读3168 评论8 喜欢11 cs224d-Day 6: 快速入门 Tensorflow 本文是学习这个视频课程系列的笔记,课程链接是 youtube 上的,讲的很好,浅显易懂,入门首选, 而且在github有代码,想看视频的也可以去他的优酷里的频道找. Tensorflow 官网 神经网络是一种数学模型,是存在于计算机的神经系统,由大量的神经元相…
用Tensorflow搭建神经网络的一般步骤如下: ① 导入模块 ② 创建模型变量和占位符 ③ 建立模型 ④ 定义loss函数 ⑤ 定义优化器(optimizer), 使 loss 达到最小 ⑥ 引入激活函数, 即添加非线性因素 (线性回归问题跳过此步骤) ⑦ 训练模型 ⑧ 检验模型 ⑨ 使用模型预测数据 ⑩ 保存模型 ⑪ 使用Tensorboard的可视化功能 下面以一个简单的线性回归问题为例: 首先是训练模型的代码: train_model.py # ① 导入模块 import tensor…
Tensorflow卷积神经网络 卷积神经网络(Convolutional Neural Network, CNN)是一种前馈神经网络, 在计算机视觉等领域被广泛应用. 本文将简单介绍其原理并分析Tensorflow官方提供的示例. 关于神经网络与误差反向传播的原理可以参考作者的另一篇博文BP神经网络与Python实现. 工作原理 卷积是图像处理中一种基本方法. 卷积核是一个nxn的矩阵通常n取奇数, 这样矩阵就有了中心点和半径的概念. 对图像中每个点取以其为中心的n阶方阵, 将该方阵与卷积核中…
1.tf.nn.lrn(pool_h1, 4, bias=1.0, alpha=0.001/9.0, beta=0.75) # 局部响应归一化,使用相同位置的前后的filter进行响应归一化操作 参数说明:pool_h1表示输入数据,4表示使用前后几层进行归一化操作,bias表示偏移量,alpha和beta表示系数 局部响应的公式 针对上述公式,做了一个试验代码: # 自己编写的代码, 对x的[1, 1, 1, 1]进行局部响应归一化操作,最后结果是相同的x = np.array([i for…
使用tensorflow构造神经网络用来进行mnist数据集的分类 相比与上一节讲到的逻辑回归,神经网络比逻辑回归多了隐藏层,同时在每一个线性变化后添加了relu作为激活函数, 神经网络使用的损失值为softmax概率损失值,即为交叉熵损失值 代码:使用的是mnist数据集作为分类的测试数据,数据的维度为50000*784 第一步:载入mnist数据集 第二步:超参数的设置,输入图片的大小,分类的类别数,迭代的次数,每一个batch的大小 第三步:使用tf.placeholder() 进行输入数…
http://www.jianshu.com/p/e112012a4b2d 本文是学习这个视频课程系列的笔记,课程链接是 youtube 上的,讲的很好,浅显易懂,入门首选, 而且在github有代码,想看视频的也可以去他的优酷里的频道找. Tensorflow 官网 神经网络是一种数学模型,是存在于计算机的神经系统,由大量的神经元相连接并进行计算,在外界信息的基础上,改变内部的结构,常用来对输入和输出间复杂的关系进行建模. 神经网络由大量的节点和之间的联系构成,负责传递信息和加工信息,神经元也…
tensorflow之神经网络实现流程总结 1.数据预处理preprocess 2.前向传播的神经网络搭建(包括activation_function和层数) 3.指数下降的learning_rate 4.参数的指数滑动平均EMA 5.防止过拟合的正则化regularization 6.loss损失函数构造(loss_ + regularization) 7.后向传播和梯度下降(learning_rate + loss) 8.评价函数的构造(accuracy + EMA) 9.run 模型(用v…
使用 Visual Studio 2015 + Python3.6 + tensorflow 构建神经网络时报错:'utf-8' codec can't decode byte 0xcc in position 78: invalid continuation byte 如下: 首先考虑的是文件路径是否是中文路径,检查之后发现无论python环境还是源文件均是英文路径,并非是路径的问题: 1. 然后尝试删除文件中的中文,包括注释,程序成功运行: 2. 在保存中文字符的情况下,尝试将文件编码设为G…
一.前言 kaggle上有传统的手写数字识别mnist的赛题,通过分类算法,将图片数据进行识别.mnist数据集里面,包含了42000张手写数字0到9的图片,每张图片为28*28=784的像素,所以整个数据集的大小为(42000,784),加上标签值的一列. 二.模型选择 通过简单的数据观察,发现这些数据都是初始的像素数据,还没经过标准化.所以对其做标准化处理后,我们就可以进入到模型选择的步骤了. 整个数据集dataset的数据量不算小,shape为(42000,784),为了节省时间,我们可以…
原文:Hands-On Convolutional Neural Networks with TensorFlow 协议:CC BY-NC-SA 4.0 自豪地采用谷歌翻译 不要担心自己的形象,只关心如何实现目标.--<原则>,生活原则 2.3.c 在线阅读 ApacheCN 面试求职交流群 724187166 ApacheCN 学习资源 目录 TensorFlow 卷积神经网络实用指南 零.前言 一.TensorFlow 的设置和介绍 二.深度学习和卷积神经网络 三.TensorFlow 中…
1.如何在全连接层拼接特征? 有一种方法是有两个input,一个input通过网络最终达到全连接层,另一个input直接接一个全连接网络,神经元数是特征数,这两个可以进行一个concat.  当然了也可以直接输入特征concat到全连接层,但是据说前者效果要好一点. 2.word2vec词向量如何在网络中更新? 在我的一个模型中(网络层次较浅),我用word2vec词向量的效果比之用随机词向量然后更新的效果要远远远远远远的不如!!!很绝望,发现word2vec词向量生成tensor又不能更新,不…
上次写完粗浅的BP算法 介绍 本来应该继续把 卷积神经网络算法写一下的 但是最近一直在踩 TensorFlow的坑.所以就先跳过算法介绍直接来应用场景,原谅我吧. TensorFlow 介绍 TF是google开源出来的人工智能库,由python语言写的 官网地址:http://www.tensorflow.org/   请用科学上网访问 中文地址:http://www.tensorfly.cn/ 当然还有其他AI库,不过大多数都是由python 写的 .net 的AI库叫 Accord.net…
在机器学习中可能会存在过拟合的问题,表现为在训练集上表现很好,但在测试集中表现不如训练集中的那么好. 图中黑色曲线是正常模型,绿色曲线就是overfitting模型.尽管绿色曲线很精确的区分了所有的训练数据,但是并没有描述数据的整体特征,对新测试数据的适应性较差. 一般用于解决过拟合的方法有增加权重的惩罚机制,比如L2正规化,但在本处我们使用tensorflow提供的dropout方法,在训练的时候, 我们随机忽略掉一些神经元和神经联结 , 使这个神经网络变得"不完整". 用一个不完整…
深层神经网络简称为深度学习有两个非常重要的特性1. 多层2. 非线性 线性模型的局限性 :例如前面的神经网络有两层(不算输入层),但是它和单层的神经网络井没有区别,任意线性模型的组合仍然还是线性模型,然而线性模型能够解决的问题是有限的 下面用TensorFlow Playground来演示 线性模型的局限性 还是以判断零件是否合格为例,输入为 X1 和巧,其中 X1 代表一个零件质量和平均质量 的差, X2代表一个零件长度和平均长度的差. 假设一个零件的质量及长度离平均质量及长度越近,那么这个零…
深度学习所示深层神经网络的代名词,重要特性:多层.非线性. 若只通过线性变换,任意层的神经网络模型与单层神经网络模型的表达能力没有任何区别,这是线性模型的局限性.对于线性可分的问题中,线性模型可解决,但在现实生活中,绝大部分的问题都是无法线性分割的.  感知机:单层神经网络.不能处理异或问题. 1.激活函数 将每一个神经元(神经网络的节点)的输出通过一个非线性函数便可使得整个神经网络的模型非线性化,这个非线性函数就是激活函数.  常用非线性激活函数:tf.nn.relu.tf.sigmoid.t…
创建神经网络模型 1.构建神经网络结构,并进行模型训练 import tensorflow as tfimport numpy as npimport matplotlib.pyplot as plt #python的结果可视化模块 """定义一个添加神经层的函数 inputs:输入数据 in_size:输入神经元的个数 out_size:输出神经元的个数 activation_function:激活函数"""def add_layer(inpu…
在机器学习中可能会存在过拟合的问题,表现为在训练集上表现很好,但在测试集中表现不如训练集中的那么好. 图中黑色曲线是正常模型,绿色曲线就是overfitting模型.尽管绿色曲线很精确的区分了所有的训练数据,但是并没有描述数据的整体特征,对新测试数据的适应性较差. 一般用于解决过拟合的方法有增加权重的惩罚机制,比如L2正规化,但在本处我们使用tensorflow提供的dropout方法,在训练的时候, 我们随机忽略掉一些神经元和神经联结 , 是这个神经网络变得"不完整". 用一个不完整…
卷积神经网络(Convolutional Neural Network, CNN)是一种前馈神经网络, 在计算机视觉等领域被广泛应用. 本文将简单介绍其原理并分析Tensorflow官方提供的示例. 关于神经网络与误差反向传播的原理可以参考作者的另一篇博文BP神经网络与Python实现. 工作原理 卷积是图像处理中一种基本方法. 卷积核是一个nxn的矩阵通常n取奇数, 这样矩阵就有了中心点和半径的概念. 对图像中每个点取以其为中心的n阶方阵, 将该方阵与卷积核中对应位置的值相乘, 并用它们的和作…
前面我们曾有篇文章中提到过关于用tensorflow训练手写2828像素点的数字的识别,在那篇文章中我们把手写数字图像直接碾压成了一个784列的数据进行识别,但实际上,这个图像是2828长宽结构的,我们这次使用CNN卷积神经网络来进行识别. 卷积神经网络我的理解是部分模仿了人眼的功能. 我们在看一个图像时不是一个像素点一个像素点去分辨的,我们的眼睛天然地具有大局观,我们看到某个图像时自动地会把其中的细节部分给聚合起来进行识别,相反,如果我们用个放大镜看到其中的各个像素点时反而不知道这是啥东西了.…
1.ascii' codec can't encode characters in position 0-4: ordinal not in range(128) 原因是python2.X默认的编码是ASCII码,只能处理通过ASCII编码的字符,自然汉字就不行了. 解决方法,在django项目的manage.py文件头部加上下面代码: import sys reload(sys) sys.setdefaultencoding('utf8') 然后就可以采用utf8编码了,也就可以处理中文数据了…
上次我们添加了一个add_layer函数,这次就要创建一个神经网络来预测/拟合相应的数据. 下面我们先来创建一下虚拟的数据,这个数据为二次曲线数据,但同时增加了一些噪点,其图像为: 相应的创建这些伪造数据的代码为: import numpy as np # 创建一列(相当于只有一个属性值),300行的x值,这里np.newaxis用于新建出列数据,使其shape为(300, 1) x_data = np.linspace(-1, 1, 300)[:,np.newaxis] # 增加噪点,噪点的均…
1.导入依赖包,初始化一些常量 import collections import numpy as np import tensorflow as tf TRAIN_DATA = "./data/ptb.train.txt" # 训练数据路径 TEST_DATA = "./data/ptb.test.txt" # 测试数据路径 EVAL_DATA = "./data/ptb.valid.txt" # 验证数据路径 HIDDEN_SIZE = 3…
#总结神经网络框架 #1,搭建网络设计结构(前向传播) 文件forward.py def forward(x,regularizer): # 输入x 和正则化权重 w= b= y= return y def get_weight(shape,regularizer): #w的shape 和w的权重 w=tf.Variable(tf.random_normal(shape),dtype=tf.float32) # 给w赋初值 #给 每一个w的正则化损失加到总损失中 tf.add_to_collec…
1. session对话控制 matrix1 = tf.constant([[3,3]]) matrix2 = tf.constant([[2],[2]]) product = tf.matmul(matrix1,matrix2) #类似于numpy的np.dot(m1,m2) 方法1: sess = tf.Session() result = sess.run(product) print(result) sess.close()>>>[[12]] 方法2: with tf.Sessi…
1. tf.nn.conv2d(x, w, strides=[1, 1, 1, 1], padding='SAME')  # 对数据进行卷积操作 参数说明:x表示输入数据,w表示卷积核, strides表示步长,分别表示为样本数,长,宽,通道数,padding表示补零操作 2. tf.nn.max_pool(x, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='SAME')  # 对数据进行池化操作 参数说明:x表示输入数据,ksize表示卷…
[背景] 在scikit-learn基础上系统结合数学和编程的角度学习了机器学习后(我的github:https://github.com/wwcom614/machine-learning),意犹未尽,打算再借势学习下深度学习TensorFlow.无奈安装之后遇到了这个问题,耽误了几个小时才得以解决. 我发现这是个很多人开始TensorFlow之旅普遍遇到的问题,而且是很多人尝试了网上很多方法都未解决的问题.排坑过程很烦,主要是各种尝试很耗时间,最终自己找到了原因,解决了问题,共享给各位同学,…
问题描述 这几天在用TensorFlow搭建一个神经网络来做一个binary classifier,搭建一个典型的神经网络的基本思路是: 定义神经网络的layers(层)以及初始化每一层的参数 然后迭代: 前向传播(Forward propagation) 计算cost(Compute cost) 反向传播(Backward propagation) 更新参数(Update parameters) 使用训练好的参数去做预测 在训练的时候发现了一个很奇怪的现象:每一次迭代所有的cost都为0.一开…