叫高二上一调?简要题解 (ACD)】的更多相关文章

A. 电压机制 题意转换为所有奇环的并排除掉所有偶环留下的边的个数 . 建出 DFS 树,然后只有返祖边可能构成环 . 于是类似树上差分,\(odd_u\) 统计奇环,\(even_u\) 统计偶环 . 如果一条返祖边 \(u\leftrightarrow v\) 形成奇环,则 \(odd_u\) 自增 \(1\),\(odd_v\) 自减 \(1\),偶环类似 . 于是 \(u\) 的子树 \(odd\) 和即为 DFS 树上 \(u\) 与其父节点连接的边被多少奇环包含 . 于是就可以随便统…
BJOI2018简要题解 D1T1 二进制 题意 pupil 发现对于一个十进制数,无论怎么将其的数字重新排列,均不影响其是不是 \(3\) 的倍数.他想研究对于二进制,是否也有类似的性质. 于是他生成了一个长为 \(n\) 的二进制串,希望你对于这个二进制串的一个子区间,能求出其有多少位置不同的连续子串,满足在重新排列后(可包含前导 \(0\))是一个 \(3\) 的倍数.两个位置不同的子区间指开始位置不同或结束位置不同. 由于他想尝试尽量多的情况,他有时会修改串中的一个位置,并且会进行多次询…
好吧,day2T1把d默认为1也是醉了,现在只能期待数据弱然后怒卡一等线吧QAQ Day0 第一次下午出发啊真是不错,才2小时左右就到了233,在车上把sao和fate补掉就到了= = 然后到宾馆之后,没wifi的生活就是惨啊QAQ 把空境补完就睡了= = Day1 时隔一年,终于又回到了六中,不过题目真是越来越简单了QAQ,day1 3道水题直接水过了,然后就开始对拍了,不过我对拍+出数据的正确方法还没掌握,必须给力一点啊QAQ 回到宾馆之后,去找偏远小渔村补番队的蹭了下wifi 下了魔法少女…
HNOI2018简要题解 D1T1 寻宝游戏 题意 某大学每年都会有一次 Mystery Hunt 的活动,玩家需要根据设置的线索解谜,找到宝藏的位置,前一年获胜的队伍可以获得这一年出题的机会. 作为新生的你对这个活动非常感兴趣.你每天都要从西向东经过教学楼一条很长的走廊,这条走廊是如此的长,以至于它被人戏称为 infinite corridor.一次,你经过这条走廊的时,注意到在走廊的墙壁上隐藏着 \(n\) 个等长的二进制的数字,长度均为 \(m\).你从西向东将这些数字记录了下来,形成一个…
JXOI2018简要题解 T1 排序问题 题意 九条可怜是一个热爱思考的女孩子. 九条可怜最近正在研究各种排序的性质,她发现了一种很有趣的排序方法: Gobo sort ! Gobo sort 的算法描述大致如下: 假设我们要对一个大小为 \(n\) 的数列 \(a\) 排序. 等概率随机生成一个大小为 \(n\) 的排列 \(p\) . 构造一个大小为 \(n\) 的数列 \(b\) 满足 \(b_i=a_{p_i}\) ,检查 \(b\) 是否有序,如果 \(b\) 已经有序了就结束算法,并…
CQOI2018简要题解 D1T1 破解 D-H 协议 题意 Diffie-Hellman 密钥交换协议是一种简单有效的密钥交换方法.它可以让通讯双方在没有事先约定密钥(密码)的情况下,通过不安全的信道(可能被窃听)建立一个安全的密钥 \(K\),用于加密之后的通讯内容. 假定通讯双方名为 Alice 和 Bob,协议的工作过程描述如下(其中 \(\bmod\) 表示取模运算): 协议规定一个固定的质数 \(P\),以及模 \(P\) 的一个原根 \(g\).\(P\) 和 \(g\) 的数值都…
AtCoder ExaWizards 2019 简要题解 Tags:题解 link:https://atcoder.jp/contests/exawizards2019 很水的一场ARC啊,随随便便就ABCDE了,F最后想到了还没有写出来. D题花了太久时间所以只有Rank31,我是真的菜. 嘿嘿嘿,上述装逼方式是我最为反感的机房里的言语,既然快退役了,也就学一学,感受一下机房里dalao们怎么样装逼一时爽.一直装逼一直爽,听者一时丧,一直听一直丧的快感咯 有意思的题应该是DE了. A Regu…
Comet OJ - Contest #2 简要题解 cometoj A 模拟,复杂度是对数级的. code B 易知\(p\in[l,r]\),且最终的利润关于\(p\)的表达式为\(\frac{(p-l)(\frac{L+R}{2}-p)}{r-l}\),二次函数求最值即可. code C 枚举独立集点数即可.\(\sum_{i=0}^n\binom nip^{\binom i2}\). code D 树上的任意一个满足\(|S|\ge2\)的点集\(S\)均有一个唯一的中心,即直径的中点(…
HNOI 2019 简要题解 没想到自己竟也能有机会写下这篇题解呢. LOJ Luogu Day1T1 鱼 枚举\(AD\)两点后发现\(BC\)与\(EF\)相对独立,因此只需要计算合法的\(BC\)对数与\(EF\)对数,相乘即可. 先考虑计算\(EF\)的对数.确定\(AD\)后,满足条件的\(EF\)对数即为在某个半平面内与\(D\)点距离相等的点对数目.枚举\(D\)后若乱序枚举\(A\),则需要再\(O(n)\)地处理\(A\)确定的半平面内的合法点对数目.可以按照极角序枚举\(A\…
JLOI2018翻车记 并不知道该怎么写... 算了还是按照标准剧情来吧 这应该是一篇写得非常差的流水账... 2018.04.04 Day -1 省选前在机房的最后一天. 压力并不是很大,毕竟联赛 JL rank 1. 晚上动员,和同学制定了策略:无论如何都不要挂题(flag). 2018.04.05 Day 0 清明. 前一天晚上(其实应该是这一天早上)梦见了自己一试考挂... 后来就醒了... 颓了一上午. 下午母上回来,不颓不颓,开始更博客. 后来由于各种原因,最终只更了两篇... 感觉…