ASEGAN:WGAN音频超分辨率 这篇文章并不具有权威性,因为没有发表,说不定是外国的某个大学的毕业设计,或者课程结束后的作业.或者实验报告. CS230: Deep Learning, Spring 2018, Stanford University, CA. (LateX template borrowed from NIPS 2017.) 作者:Jonathan Gomes-Selman, Arjun Sawhney, WoodyWang 摘要 本文提出使用Wasserstein(沃瑟斯…
Photo-Realistic Single Image Super-Resolution Using a Generative Adversarial Network  2016.10.23 摘要:本文针对传统超分辨方法中存在的结果过于平滑的问题,提出了结合最新的对抗网络的方法,得到了不错的效果.并且针对此网络结构,构建了自己的感知损失函数.先上一张图,展示下强大的结果: Contributions: GANs 提供了强大的框架来产生高质量的 plausible-looking natural…
Face Aging with Conditional Generative Adversarial Network 论文笔记 2017.02.28  Motivation: 本文是要根据最新的条件产生式对抗玩网络(CGANs)来完成,人类老年照片的估计. 主要是做了一下两个事情: 1. 根据年龄阶段,进行照片的老年估计,用 acGAN 网络来完成: 2. 提出一种 隐层变量优化算法(latent vector optimization approach),允许 acGAN 可以重构输入人脸图像…
笔记持续更新中,请大家耐心等待 首先需要大概了解什么是生成对抗网络,参考维基百科给出的定义(https://zh.wikipedia.org/wiki/生成对抗网络): 生成对抗网络(英语:Generative Adversarial Network,简称GAN)是非监督式学习的一种方法,通过让两个神经网络相互博弈的方式进行学习.该方法由扬·古德费洛等人于2014年提出.[1] 生成对抗网络由一个生成网络与一个判别网络组成.生成网络从潜在空间(latent space)中随机采样作为输入,其输出…
参考: https://baijiahao.baidu.com/s?id=1568663805038898&wfr=spider&for=pc Generative Adversarial Network GAN基础和优点 这些惊艳的工作基本都是2016年8月甚至10月以后的,也就是 GAN 被提出两年后.这是因为,虽然 GAN 有非常吸引人的性质,想要训练好它并不容易.经过两年的摸索.思考与尝试,才有了如今的积累和突破. 那么这个非常吸引人的 GAN 是什么样呢.其实 GAN 最初让人“…
Single Image Dehazing via Conditional Generative Adversarial Network Runde Li∗ Jinshan Pan∗ Zechao Li Jinhui Tang† School of Computer Science and Engineering, Nanjing University of Science and Technology 研究方向: Dehazing,cGAN motivation 对于直接通过算法复原有雾的图像…
博客作者:凌逆战 博客地址:https://www.cnblogs.com/LXP-Never/p/10874993.html 论文作者:Sefik Emre Eskimez , Kazuhito Koishida 摘要 语音超分辨率(SSR)或语音带宽扩展的目标是由给定的低分辨率语音信号生成缺失的高频分量.它有提高电信质量的潜力.我们提出了一种新的SSR方法,该方法利用生成对抗网络(GANs)和正则化(regularization)方法来稳定GAN训练.生成器网络是有一维卷积核的卷积自编码器,…
DeepPrivacy: A Generative Adversarial Network for Face Anonymization ISVC 2019 https://arxiv.org/pdf/1909.04538.pdf  (个人理解,欢迎指正错误)   Introduction 隐私:整个人脸 可用性:是看起来自然的人 文章基于CGAN架构,模型以被遮蔽敏感信息的人脸为输入,以真实人脸中的若干个关键点为条件信息生成假人脸.合成人脸在匿名的同时保留数据分布,使数据适合于进一步训练深度学…
出处 arXiv.org (引用量暂时只有3,too new)2017.7 SourceCode:https://github.com/RichardYang40148/MidiNet Abstract 以前的音乐生成工作多基于RNN,受DeepMind提出的WaveNet的启发,作者尝试用CNN来生成音乐,确切地说,用GAN来生成音乐,模型称为MidiNet.与Google的MelodyRNN(magenta)相比,在realistic和pleasant上旗鼓相当,yet MidiNet’s…
https://www.bilibili.com/video/av9770302/?p=15 前面说了auto-encoder,VAE可以用于生成 VAE的问题, AE的训练是让输入输出尽可能的接近,所以生成出来图片只是在模仿训练集,而无法生成他完全没有见过的,或新的图片 由于VAE并没有真正的理解和学习如何生成新的图片,所以对于下面的例子,他无法区分两个case的好坏,因为从lost上看都是比7多了一个pixel 所以产生GAN, 大家都知道GAN是对抗网络,是generator和discri…