在现在的机器学习中,很多人都在研究自适应的参数,不需要人工调参,但是仅仅是自动调参就不能根本上解决 ai识别准确度达不到实际生产的要求和落地困难的问题吗?结论可想而知.如果不改变参数,那就得从算法的结构入手, 比如,现有的谷歌的MnasNet系列,这种是在人工的指导下进行的,但是,仅仅是这样就够了吗?我个人觉得还不够 1.在做机器学习的时候,我们模型的指标提不上去的时候,通常原因是因为边缘样本,也就是我们所说的hard-example, 如果和解决边缘样本呢?目前是人工发现这些样本并增加hard…