深度学习入门系列之doc】的更多相关文章

如果你希望系统性的了解神经网络,请参考零基础入门深度学习系列,下面我会粗略的介绍一下本文中实现神经网络需要了解的知识. 什么是深度神经网络? 神经网络包含三层:输入层(X).隐藏层和输出层:f(x) 每层之间每个节点都是完全连接的,其中包含权重(W).每层都存在一个偏移值(b). 每一层节点的计算方式如下: 其中g()代表激活函数,o()代表softmax输出函数. 使用Flow Graph的方式来表达如何正向推导神经网络,可以表达如下: x: 输入值 a(x):表示每个隐藏层的pre-acti…
欢迎大家关注腾讯云技术社区-博客园官方主页,我们将持续在博客园为大家推荐技术精品文章哦~ 作者 :董超 上一篇文章我们介绍了 MxNet 的安装,但 MxNet 有个缺点,那就是文档不太全,用起来可能是要看源代码才能理解某个方法的含义,所以今天我们就介绍一下 TensorFlow,这个由谷歌爸爸出品的深度学习框架,文档比较全-以后的我们也都使用这个框架- 0x00 概要 TensorFlow是谷歌爸爸出的一个开源机器学习框架,目前已被广泛应用,谷歌爸爸出品即使性能不是最强的(其实性能也不错),但…
好久没有更新了,实在不知道应该写一些什么内容,因为作为入门系列,实际上应该更多的是操作而不是理论,而在UI5 SDK中的EXPLORER里面有着各种控件的用法,所以在这里也没有必要再来一遍,还是看官方的用法更地道. 看一下基于最新的库所推荐的项目结构. 另外,我觉得对于初学者来说是一个非常好的消息,就是UI5版本从1.28更新到1.30以及更高之后,Tutorial系列有了重大更新,之前的Get Started->Tutorials->Application Best Practice现在改为…
1 UI5代码结构 上一次我们一起用了20秒的时间完成一个UI5版的Hello World.应用打开后有一个按钮,按钮的文字是Hello World,点击这个按钮之后,按钮会慢慢的消失掉(Fade out). 那我们这次就来看一看为了实现这么一个简单的功能,OpenUI5框架至少需要提供哪些内容,或者说我们通过这么一个简单的应用来看一下一个最简单的UI5的应用程序的结构. HTML部分应该不用多说,我们只看和UI5相关的代码,第一部分我们称为Bootstrap,包含以下代码段: <!-- 1.)…
给深度学习入门者的Python快速教程 基础篇 numpy和Matplotlib篇 本篇部分代码的下载地址: https://github.com/frombeijingwithlove/dlcv_for_beginners/tree/master/chap5 5.3 Python的科学计算包 – Numpy numpy(Numerical Python extensions)是一个第三方的Python包,用于科学计算.这个库的前身是1995年就开始开发的一个用于数组运算的库.经过了长时间的发展…
  5.1 Python简介 本章将介绍Python的最基本语法,以及一些和深度学习还有计算机视觉最相关的基本使用. 5.1.1 Python简史 Python是一门解释型的高级编程语言,特点是简单明确.Python作者是荷兰人Guido van Rossum,1982年他获得数学和计算机硕士学位后,在荷兰数学与计算科学研究所(Centrum Wiskunde & Informatica, CWI)谋了份差事.在CWI期间,Guido参与到了一门叫做ABC的语言开发工作中.ABC是一门教学语言,…
这次博客园的排版彻底残了..高清版请移步: https://zhuanlan.zhihu.com/p/24425116 本篇是前面两篇教程: 给深度学习入门者的Python快速教程 - 基础篇 给深度学习入门者的Python快速教程 - numpy和Matplotlib篇 的番外篇,因为严格来说不是在讲Python而是在讲在Python下使用OpenCV.本篇将介绍和深度学习数据处理阶段最相关的基础使用,并完成4个有趣实用的小例子: - 延时摄影小程序 - 视频中截屏采样的小程序 - 图片数据增…
始终无法有效把word排版好的粘贴过来,排版更佳版本请见知乎文章: https://zhuanlan.zhihu.com/p/24309547 实在搞不定博客园的排版,排版更佳的版本在: 给深度学习入门者的Python快速教程 - numpy和Matplotlib篇 5.3 Python的科学计算包 - Numpy numpy(Numerical Python extensions)是一个第三方的Python包,用于科学计算.这个库的前身是1995年就开始开发的一个用于数组运算的库.经过了长时间…
前期回顾: 深度学习实践系列(1)- 从零搭建notMNIST逻辑回归模型 深度学习实践系列(2)- 搭建notMNIST的深度神经网络 在第二篇系列中,我们使用了TensorFlow搭建了第一个深度神经网络,并且尝试了很多优化方式去改进神经网络学习的效率和提高准确性.在这篇文章,我们将要使用一个强大的神经网络学习框架Keras配合TensorFlow重新搭建一个深度神经网络. 什么是Keras? 官方对于Keras的定义如下: "Keras: Deep Learning library for…
Dropout是过去几年非常流行的正则化技术,可有效防止过拟合的发生.但从深度学习的发展趋势看,Batch Normalizaton(简称BN)正在逐步取代Dropout技术,特别是在卷积层.本文将首先引入Dropout的原理和实现,然后观察现代深度模型Dropout的使用情况,并与BN进行实验比对,从原理和实测上来说明Dropout已是过去式,大家应尽可能使用BN技术. 一.Dropout原理 根据wikipedia定义,dropout是指在神经网络中丢弃掉一些隐藏或可见单元.通常来说,是在神…