一句话题意:G 的 sigma d|n  C(n d) 次幂  mod 999911659 (我好辣鸡呀还是不会mathjax) 分析: 1.利用欧拉定理简化模运算 ,将上方幂设为x,则x=原式mod 999911658. 2.发现幂的前半部分太大无法直接算,又因为999911658 可分解为 2 3 4679 35617 四个质数 3.利用中国剩余定理可分别计算 x=a1(mod m1=2) ...最后利用它统计出x 4.快速幂将答案计算 #include<bits/stdc++.h> #d…
显然答案是G^∑C(d,N)(d|N).O(N^0.5)枚举N的约数.取模的数999911659是质数, 考虑欧拉定理a^phi(p)=1(mod p)(a与p互质), 那么a^t mod p = a^(t mod phi(p)) mod p.所以答案是G^(∑C(d,N)%(p-1))(d|N), 但是因为p-1不是质数, 所以只能先拆成质数的乘积, 各自用lucas计算然后中国剩余定理合并, 最后快速幂就行了. ----------------------------------------…
[bzoj1951]: [Sdoi2010]古代猪文 因为999911659是个素数 欧拉定理得 然后指数上中国剩余定理 然后分别lucas定理就好了 注意G==P的时候的特判 /* http://www.cnblogs.com/karl07/ */ #include <cstdlib> #include <cstdio> #include <cstring> #include <cmath> #include <algorithm> using…
数论神题了吧算是 1951: [Sdoi2010]古代猪文 Time Limit: 1 Sec Memory Limit: 64 MB Submit: 1573 Solved: 650 [Submit][Status][Discuss] Description "在那山的那边海的那边有一群小肥猪.他们活泼又聪明,他们调皮又灵敏.他们自由自在生活在那绿色的大草坪,他们善良勇敢相互都关心--" --选自猪王国民歌 很久很久以前,在山的那边海的那边的某片风水宝地曾经存在过一个猪王国.猪王国地…
Description "在那山的那边海的那边有一群小肥猪.他们活泼又聪明,他们调皮又灵敏.他们自由自在生活在那绿色的大草坪,他们善良勇敢相互都关心--" --选自猪王国民歌 很久很久以前,在山的那边海的那边的某片风水宝地曾经存在过一个猪王国.猪王国地理位置偏僻,实施的是适应当时社会的自给自足的庄园经济,很少与外界联系,商贸活动就更少了.因此也很少有其他动物知道这样一个王国. 猪王国虽然不大,但是土地肥沃,屋舍俨然.如果一定要拿什么与之相比的话,那就只能是东晋陶渊明笔下的大家想象中的桃…
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=1951 题意就是要求 G^( ∑(k|n) C(n,k) ) % p,用费马小定理处理指数,卢卡斯定理处理大组合数,取模用中国剩余定理合并: 好想难写的感觉(其实也不难写?): 关于中国剩余定理,可以看这篇博客:https://www.cnblogs.com/MashiroSky/p/5918158.html 第一次写中国剩余定理合并模数,还有一点好不容易理解的地方,写在注释里. 代码如下:…
题目链接 \(Description\) 给定N,G,求\[G^{\sum_{k|N}C_n^k}\mod\ 999911659\] \(Solution\) 由费马小定理,可以先对次数化简,即求\(\sum_{k|N}C_n^k\mod\ 99991168\),然后快速幂就可以解决. 可以把999911659分解成4个质因数,分别用Lucas定理求解然后用CRT合并即可. 要注意费马小定理成立的条件: a,p互质,即G!=mod. //1380kb 156ms #include <cmath>…
题目描述 求  $g^{\sum\limits_{k|n}C_{n}^{\frac nk}}\mod 999911659$ 输入 有且仅有一行:两个数N.G,用一个空格分开. 输出 有且仅有一行:一个数,表示答案除以999911659的余数. 样例输入 4 2 样例输出 2048 题解 费马小定理+Lucas定理+中国剩余定理 首先由费马小定理$a^{p-1}\equiv 1\ \ (mod\ p)$,可以将模数转化到答案的指数上,即求$\sum\limits_{k|n}C_{n}^{\frac…
洛谷:2480古代猪文 题意描述: 给定两个整数\(N,G\),求$G^{\sum_{k|n}C_n^k} mod 999911659 $. 数据范围: \(1\leq N\leq 10^9,1\leq G\leq 10^9\). 思路: 对于这样一个式子,暴力肯定是不可能的,所以我们先来挖掘一些性质. 模数\(999911659\)是一个质数,我们可以想到对这个式子进行欧拉降幂. 我们可以得到式子: \(G^{\sum_{k|n}C_n^k}\equiv\ G^{\sum_{k|n}C_n^k…
/* 古代猪文:Lucas定理+中国剩余定理 999911658=2*3*4679*35617 Lucas定理:(m,n)=(sp,tp)(r,q) %p 中国剩余定理:x=sum{si*Mi*ti}+km 先求出sum{C(d,n)}%p[i]=a[i] */ #include<bits/stdc++.h> using namespace std; #define ll long long #define mod 999911659 #define maxn 100005 ll m[]={,…