题意是说在给定的一种满足每一项等于前两项之和的数列中,判断第 n 项的数字是否为 3 的倍数. 斐波那契数在到第四十多位的时候就会超出 int 存储范围,但是题目问的是是否为 3 的倍数,也就是模 3 值为 0 ,考虑到余数只有0,1,2,而且每项由前两项求和得到,也就是说余数一定会出现循环的规律,从首项开始,前 8 项模 3 的结果是:1 2 0 2 2 1 0 1,接下来的两项模 3 的结果仍是 1 2 ,那么整个序列就呈现出以 8 为周期的特点,只要模 8 的结果为 3 或者 7 就输出…