saver.restore()遇到的错误】的更多相关文章

运行python程序执行  saver.restore(sess,"E:/pythonFile/untitled/deepLearning/model/model.ckpt")  出行错误,下面报错是 NotFoundError (see above for traceback): Unsuccessful TensorSliceReader constructor: Failed to find any matching files for E:/pythonFile/untitle…
1. tf.nn.embedding_lookup(W, X) W的维度为[len(vocabulary_list), 128], X的维度为[?, 8],组合后的维度为[?, 8, 128] 代码说明一下:即根据每一行X中的一个数,从W中取出对应行的128个数据,比如X[1, 3]个数据是3062,即从W中的第3062行取出128个数据 import numpy as np import tensorflow as tf data = np.array([[2, 1], [3, 4], [5,…
1.cv2.resize(image, (image_size, image_size), 0, 0, cv2.INTER_LINEAR) 参数说明:image表示输入图片,image_size表示变化后的图片大小,0, 0表示dx和dy, cv2.INTER_LINEAR表示插值的方式为线性插值 2.image.get_shape[1:4].num_elements() 获得最后三个维度的大小之和 参数说明:image表示输入的图片 3. saver.save(sess, path, glob…
x = tf.placeholder(tf.float32) y = tf.placeholder(tf.float32) w = tf.Variable(tf.zeros([1, 1], dtype=tf.float32)) b = tf.Variable(tf.ones([1, 1], dtype=tf.float32)) y_hat = tf.add(b, tf.matmul(x, w)) ...more setup for optimization and what not... sav…
解决tensorflow 的 Saver.restore()无法从本地读取变量的问题 最近做tensorflow 手写数字识别的时候遇到了一个问题,Saver的restore()方法无法从本地恢复变量,导致了每次都会重新训练. 原来代码 saver = tf.train.Saver(max_to_keep=5) epoch = tf.Variable(0, name='epoch', trainable=False) sess = tf.Session() sess.run(tf.global_…
最近在写gan,那么就牵扯到在一个session中加载两个图,restore的时候会有问题.如这篇文章写的(http://blog.csdn.net/u014659656/article/details/53954793),见文末 所以关键就是构造的Saver 最好带Variable参数,这样加载第二个图的时候才不会找不到变量. 这个issue里写的比较好:https://github.com/tensorflow/tensorflow/issues/212 最终解决方案: all_vars =…
摘要:这篇文章将讲解TensorFlow如何保存变量和神经网络参数,通过Saver保存神经网络,再通过Restore调用训练好的神经网络. 本文分享自华为云社区<[Python人工智能] 十一.Tensorflow如何保存神经网络参数 丨[百变AI秀]>,作者: eastmount. 一.保存变量 通过tf.Variable()定义权重和偏置变量,然后调用tf.train.Saver()存储变量,将数据保存至本地"my_net/save_net.ckpt"文件中. # -*…
import tensorflow as tf import tensorflow.contrib.slim as slim import rawpy import numpy as np import tensorflow as tf import struct import glob import os from PIL import Image import time __sony__ = 0 __huawei__ = 1 __blackberry__ = 2 __stage_raw2ra…
摘抄自:https://blog.csdn.net/u011500062/article/details/51728830/ 1.实例 import tensorflow as tf import numpy as np x = tf.placeholder(tf.float32, shape=[None, 1]) y = 4 * x + 4 w = tf.Variable(tf.random_normal([1], -1, 1)) b = tf.Variable(tf.zeros([1]))…
将训练好的模型参数保存起来,以便以后进行验证或测试,这是我们经常要做的事情.tf里面提供模型保存的是tf.train.Saver()模块. 模型保存,先要创建一个Saver对象:如 saver=tf.train.Saver() 在创建这个Saver对象的时候,有一个参数我们经常会用到,就是 max_to_keep 参数,这个是用来设置保存模型的个数,默认为5,即 max_to_keep=5,保存最近的5个模型.如果你想每训练一代(epoch)就想保存一次模型,则可以将 max_to_keep设置…