描述 一开始森林里面有N只互不相识的小猴子,它们经常打架,但打架的双方都必须不是好朋友.每次打完架后,打架的双方以及它们的好朋友就会互相认识,成为好朋友.经过$N-1$次打架之后,整个森林的小猴都会成为好朋友. 现在的问题是,总共有多少种不同的打架过程. 比如当$N=3$时,就有{1-2,1-3}{1-2,2-3}{1-3,1-2}{1-3,2-3}{2-3,1-2}{2-3,1-3}六种不同的打架过程. 题解 问题 $=$ 求出$N$个有标号节点的树的个数 $\times$ 连边的顺序. 因为…
1430: 小猴打架 Time Limit: 5 Sec  Memory Limit: 162 MB Description 一开始森林里面有N只互不相识的小猴子,它们经常打架,但打架的双方都必须不是好朋友.每次打完架后,打架的双方以及它们的好朋友就会互相认识,成为好朋友.经过N-1次打架之后,整个森林的小猴都会成为好朋友. 现在的问题是,总共有多少种不同的打架过程. 比如当N=3时,就有{1-2,1-3}{1-2,2-3}{1-3,1-2}{1-3,2-3}{2-3,1-2}{2-3,1-3}…
小猴打架 Time Limit: 5 Sec  Memory Limit: 162 MBSubmit: 709  Solved: 512[Submit][Status][Discuss] Description 一开始森林里面有N只互不相识的小猴子,它们经常打架,但打架的双方都必须不是好朋友.每次打完架后,打架的双方以及它们的好朋友就会互相认识,成为好朋友.经过N-1次打架之后,整个森林的小猴都会成为好朋友. 现在的问题是,总共有多少种不同的打架过程. 比如当N=3时,就有{1-2,1-3}{1…
Description 一开始森林里面有N只互不相识的小猴子,它们经常打架,但打架的双方都必须不是好朋友.每次打完架后,打架的双方以及它们的好朋友就会互相认识,成为好朋友.经过N-1次打架之后,整个森林的小猴都会成为好朋友. 现在的问题是,总共有多少种不同的打架过程. 比如当N=3时,就有{1-2,1-3}{1-2,2-3}{1-3,1-2}{1-3,2-3}{2-3,1-2}{2-3,1-3}六种不同的打架过程. Input 一个整数N. Output 一行,方案数mod 9999991. S…
题目描述 一开始森林里面有N只互不相识的小猴子,它们经常打架,但打架的双方都必须不是好朋友.每次打完架后,打架 的双方以及它们的好朋友就会互相认识,成为好朋友.经过N-1次打架之后,整个森林的小猴都会成为好朋友. 现 在的问题是,总共有多少种不同的打架过程. 比如当N=3时,就有{1-2,1-3}{1-2,2-3}{1-3,1-2}{1-3,2-3}{2-3,1 -2}{2-3,1-3}六种不同的打架过程. 输入 一个整数N,N<=10^6 输出 一行,方案数mod 9999991. 样例输入…
题目链接 猴子之间的打架是棵无根树,有\(n^{n-2}\)种可能:同时n-1个过程的排列是\((n-1)!\) //820kb 104ms #include <cstdio> const int mod=9999991; int FP(long long x,int k) { long long t=1; for(; k; k>>=1,x=x*x%mod) if(k&1) t=t*x%mod; return t; } int main() { int n; scanf(&…
排列组合 蛮逗的…… 这题题干描述的就一股浓浓的Kruskal的气息……很容易就想到是求一个n个点的完全图的生成树个数,然后由于有序,再乘一个n-1的排列数(n-1条边的全排列)即(n-1)! 但是我一下就卡在了 完全图的生成树个数这个地方……怎么也想不出来……后来看了题解,原来这是一个奇葩的结论:[n^(n-2)] 好吧剩下的就是水了……完全无压力…… Cayley公式 /*************************************************************…
题目传送门 https://lydsy.com/JudgeOnline/problem.php?id=1430 题解 prufer 序列模板题. 一个由 \(n\) 个点构成的有标号无根树的个数为 \(n^{n-2}\). 证明就是 prufer 序列,可以看我的学习笔记. https://www.cnblogs.com/hankeke/p/prufer.html 然后因为一棵树的加边顺序随意,所以还需要乘上 \((n-1)!\). 所以最后答案为 \(n^{n-2}(n-1)!\). #inc…
题目描述 给出 $n$ 个点,每次选择任意一条边,问这样 $n-1$ 次后得到一棵树的方案数是多少. 输入 一个整数N. 输出 一行,方案数mod 9999991. 样例输入 4 样例输出 96 题解 Prufer序列 答案完全可以看作两部分:生成一棵树的方案数*最终的树的个数. 生成一棵树的方案数即边的全排列树 $(n-1)!$ . 最终的树的个数即Prufer序列的结论 $n^{n-2}$ ,因为 $n-2$ 个位置每个位置均有 $n$ 个选择. 本题 $n$ 较小,直接暴力计算即可. #i…
题意 n个点问有多少种有顺序的连接方法把这些点连成一棵树. (n<=106) 题解 了解有关prufer编码与Cayley定理的知识. 可知带标号的无根树有nn-2种.然后n-1条边有(n-1)!的先后连接顺序. 所以答案为nn-2(n-1)! #include<iostream> #include<cstring> #include<cstdio> #include<cmath> #include<algorithm> using nam…