BZOJ2734 HNOI2012集合选数(状压dp)】的更多相关文章

[HNOI2012]集合选数 题目描述 <集合论与图论>这门课程有一道作业题,要求同学们求出\({1,2,3,4,5}\)的所有满足以 下条件的子集:若 x 在该子集中,则 2x 和 3x 不能在该子集中. 同学们不喜欢这种具有枚举性 质的题目,于是把它变成了以下问题:对于任意一个正整数, 如何求出\({1,2,3...n}\) 的满足上述约束条件的子集的个数(只需输出对 \(10^{9}+1\) 取模的结果),现在这个问题就交给你了. 输入格式: 只有一行,其中有一个正整数 \(n\) 30…
2734: [HNOI2012]集合选数 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 1070  Solved: 623[Submit][Status][Discuss] Description <集合论与图论>这门课程有一道作业题,要求同学们求出{1, 2, 3, 4, 5}的所有满足以 下条件的子集:若 x 在该子集中,则 2x 和 3x 不能在该子集中.同学们不喜欢这种具有枚举性 质的题目,于是把它变成了以下问题:对于任意一个正整数 n…
2734: [HNOI2012]集合选数 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 560  Solved: 321[Submit][Status] Description <集合论与图论>这门课程有一道作业题,要求同学们求出{1, 2, 3, 4, 5}的所有满足以 下条件的子集:若 x 在该子集中,则 2x 和 3x 不能在该子集中.同学们不喜欢这种具有枚举性 质的题目,于是把它变成了以下问题:对于任意一个正整数 n≤100000,如何…
题目链接 https://www.lydsy.com/JudgeOnline/problem.php?id=2734 题解 嗯早就想写的题,昨天因为某些不可告人的原因(大雾)把这题写了,今天再来写题解 神仙题,做法大概就是,构造一个矩阵,左上角是\(1\), 往下每个数都是上面的\(3\)倍,往右每个数都是左面的\(2\)倍,然后在上面跑状压DP,求有多少种选法使得没有两个被选的位置有公共边 然后把左上角改成\(5,7,11...\)分别做一遍,答案相乘即可 嗯,时间复杂度--玄学? 下面给出我…
正解:$dp$ 解题报告: 传送门$QwQ$ 考虑列一个横坐标为比值为2的等比数列,纵坐标为比值为3的等比数列的表格.发现每个数要选就等价于它的上下左右不能选. 于是就是个状压$dp$板子了$QwQ$ 然后因为有些数是无关联的就不会在一个表格中($eg:1,5$.所以要建多个表格,最后乘法原理就好,$over$ #include<bits/stdc++.h> using namespace std; #define il inline #define gc getchar() #define…
\(Des\) 求对于正整数\(n\leq 1e5\),{\(1,2,3,...,n\)}的满足约束条件:"若\(x\)在该子集中,则\(2x\)和\(3x\)不在该子集中."的子集个数. \(Sol\) 是一道很妙的构造+状压\(dp\)题吖. 我最开始想这题的时候画了一个如下的图.对于每一个点,左儿子是它的两倍,右儿子是它的三倍. 约束条件是:连了边的两个点是不可以同时选的,也就是只能隔一个选一个,但是这样显然不好做.于是考虑能不能再转化一下.仔细观察这个图会发现它特别像一棵树,但…
这道题很神啊…… 神爆了…… 思路大家应该看别的博客已经知道了,但大部分用的插头DP.我加了预处理,没用插头DP,一行一行来,速度还挺快. #include <cstdio> #include <cstring> #include <cstdlib> #include <iostream> #include <algorithm> #include <cmath> #define N 100100 #define M 50 #defi…
2734: [HNOI2012]集合选数 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 1070  Solved: 623[Submit][Status][Discuss] Description <集合论与图论>这门课程有一道作业题,要求同学们求出{1, 2, 3, 4, 5}的所有满足以 下条件的子集:若 x 在该子集中,则 2x 和 3x 不能在该子集中.同学们不喜欢这种具有枚举性 质的题目,于是把它变成了以下问题:对于任意一个正整数 n…
完全想不到的第一步是构造一个矩阵,使得每行构成公比为3的等比数列,每列构成公比为2的等比数列.显然矩阵左上角的数决定了这个矩阵,只要其取遍所有既不被2也不被3整除的数那么所得矩阵的并就是所有的数了,并且显然不会有重复. 现在要满足题目要求只需要使在矩阵中选取的数不相邻.显然这可以用状压dp以4^n*m的复杂度搞出来.对于每一个矩阵都这样做一遍再乘起来就可以了. 看起来复杂度非常爆炸.不过冷静分析一下,这样做的复杂度往大了算是Σ4log3(n/i)*log2n,即Σ(n/i)*log34*log2…
Description 题目链接 Solution 可以根据条件构造出一个矩阵, 1 3 9 27 81... 2 6 18.... 4 12 36... 这个矩阵满足\(G[i][1]=G[i-1][1]*2(1< i),G[i][j]=G[i][j-1]*3(1\leq i,1<j)\) 也就是要满足不能同时选择矩阵中\((G[i][j],G[i][j+1],G[i+1][j])\) 而且会发现,矩阵可能有多个,应枚举矩阵的\(G[1][1]\)并记录下出现过的数 这样会发现矩阵最大长为1…