P1010 幂次方 P1022 计算器的改良】的更多相关文章

P1010 幂次方 一.题目 https://www.luogu.org/problemnew/show/P1010 二.代码 #include<bits/stdc++.h> using namespace std; // 根据2的几次幂进行分解 string decompose(int num) { ) { "; } string s = ""; ; // 指数,比如2=2^1,则指数为1 do { ) // 判断奇数 { // num=2时,exp==1才为真…
P1022 计算器的改良 题目背景 NCL 是一家专门从事计算器改良与升级的实验室,最近该实验室收到了某公司所委托的一个任务:需要在该公司某型号的计算器上加上解一元一次方程的功能.实验室将这个任务交给了一个刚进入的新手ZL先生. 题目描述 为了很好的完成这个任务, ZL 先生首先研究了一些一元一次方程的实例: 4+3x=8 6a-5+1=2-2a -5+12y=0 ZL 先生被主管告之,在计算器上键入的一个一元一次方程中,只包含整数.小写字母及+.-.=这三个数学符号(当然,符号"-"…
P1022 计算器的改良 题目背景 NCL是一家专门从事计算器改良与升级的实验室,最近该实验室收到了某公司所委托的一个任务:需要在该公司某型号的计算器上加上解一元一次方程的功能.实验室将这个任务交给了一个刚进入的新手ZL先生. 题目描述 为了很好的完成这个任务,ZL先生首先研究了一些一元一次方程的实例: 4+3x=8 6a-5+1=2-2a -5+12y=0 ZL先生被主管告之,在计算器上键入的一个一元一次方程中,只包含整数.小写字母及+.-.=这三个数学符号(当然,符号“-”既可作减号,也可作…
P1022 计算器的改良 题目背景 NCL是一家专门从事计算器改良与升级的实验室,最近该实验室收到了某公司所委托的一个任务:需要在该公司某型号的计算器上加上解一元一次方程的功能.实验室将这个任务交给了一个刚进入的新手ZL先生. 题目描述 为了很好的完成这个任务,ZL先生首先研究了一些一元一次方程的实例: 4+3x=8 6a-5+1=2-2a -5+12y=0 ZL先生被主管告之,在计算器上键入的一个一元一次方程中,只包含整数.小写字母及+.-.=这三个数学符号(当然,符号“-”既可作减号,也可作…
2021.07.26 P1022 计算器的改良(字符串) 改进: 如果是我出题,我一定把未知数设为ab.buh.bluesky之类的长度不只是1的字符串! 题意: 一个一元一次方程,求解. 分析: 1.处理未知数之前的系数,别忘了-x||+x||=x的系数为-1||1||1: 2.处理已知数,参考快读 3.处理结果 代码如下: #include<cstdio> #include<iostream> #include<cstring> #include<algori…
2021.07.26 P1010 幂次方(数论) [P1010 NOIP1998 普及组] 幂次方 - 洛谷 | 计算机科学教育新生态 (luogu.com.cn) 重点: 1.二进制 题意: 用20或21表示一个数为二的多少次方 分析: 递归. 代码如下: #include<cstdio> #include<iostream> #include<cstring> using namespace std; int n; inline int read(){ int s=…
题目描述 任何一个正整数都可以用2的幂次方表示.例如 137=2^7+2^3+2^0 同时约定方次用括号来表示,即a^b 可表示为a(b). 由此可知,137可表示为: 2(7)+2(3)+2(0) 进一步:7= 2^2+2+2^0 (2^1用2表示) 3=2+2^0 所以最后137可表示为: 2(2(2)+2+2(0))+2(2+2(0))+2(0) 又如: 1315=2^10 +2^8 +2^5 +2+1 所以1315最后可表示为: 2(2(2+2(0))+2)+2(2(2+2(0)))+2…
0 题面 题目描述 任何一个正整数都可以用2的幂次方表示.例如 137=2^7+2^3+2^0 同时约定方次用括号来表示,即a^b 可表示为a(b). 由此可知,137可表示为: 2(7)+2(3)+2(0) 进一步:7= 2^2+2+2^0 (2^1用2表示) 3=2+2^0 所以最后137可表示为: 2(2(2)+2+2(0))+2(2+2(0))+2(0) 又如: 1315=2^10 +2^8 +2^5 +2+1 所以1315最后可表示为: 2(2(2+2(0))+2)+2(2(2+2(0…
题目描述 任何一个正整数都可以用22的幂次方表示.例如 137=2^7+2^3+2^0137=27+23+20 同时约定方次用括号来表示,即a^bab 可表示为a(b)a(b). 由此可知,137137可表示为: 2(7)+2(3)+2(0)2(7)+2(3)+2(0) 进一步: 7= 2^2+2+2^07=22+2+20(2^1用2表示),并且 3=2+2^03=2+20 所以最后137137可表示为: 2(2(2)+2+2(0))+2(2+2(0))+2(0)2(2(2)+2+2(0))+2…
题目描述 任何一个正整数都可以用222的幂次方表示.例如 137=27+23+20137=2^7+2^3+2^0 137=27+23+20 同时约定方次用括号来表示,即aba^bab 可表示为a(b)a(b)a(b). 由此可知,137137137可表示为: 2(7)+2(3)+2(0)2(7)+2(3)+2(0)2(7)+2(3)+2(0) 进一步: 7=22+2+207= 2^2+2+2^07=22+2+20 (2^1用2表示),并且 3=2+203=2+2^03=2+20 所以最后1371…