Hadoop生态常用数据模型】的更多相关文章

Hadoop生态常用数据模型 一.TextFile 二.SequenceFile 1.特性 2.存储结构 3.压缩结构与读取过程 4.读写操作 三.Avro 1.特性 2.数据类型 3.avro-tools应用 4.在Hive中使用Avro 5.在Spark中使用Avro 四.Parquet 1.特性 2.数据结构 3.Java API 4.Parquet On Spark 5.Parquet On Hive 五.RC&ORC 1.特性 2.存储结构RC (Record Columnar)ORC…
FROM : http://www.2cto.com/database/201303/198460.html hadoop hdfs常用命令   hadoop常用命令:  hadoop fs  查看Hadoop HDFS支持的所有命令    hadoop fs –ls  列出目录及文件信息    hadoop fs –lsr  循环列出目录.子目录及文件信息    hadoop fs –put test.txt /user/sunlightcs  将本地文件系统的test.txt复制到HDFS文…
为了学习Hadoop生态的部署和调优技术,在笔记本上的3台虚拟机部署Hadoop集群环境,要求保证HA,即主要服务没有单点故障,能够执行最基本功能,完成小内存模式的参数调整. 1.    准备环境 1.1. 规划 克隆3台服务器,主机名和IP如下 主机名 IP 软件 hadoop 192.168.154.128 原始虚拟机用于克隆 hadoop1 192.168.154.3 Zookeeper,journalnode Namenode, zkfc, Resourcemanager hadoop2…
随着公司业务发展,对大数据的获取和实时处理的要求就会越来越高,日志处理.用户行为分析.场景业务分析等等,传统的写日志方式根本满足不了业务的实时处理需求,所以本人准备开始着手改造原系统中的数据处理方式,重新搭建一个实时流处理平台,主要是基于hadoop生态,利用Kafka作为中转,SparkStreaming框架实时获取数据并清洗,将结果多维度的存储进HBase数据库. 整个平台大致的框架如下: 操作系统:Centos7 用到的框架: 1. Flume1.8.0 2. Hadoop2.9.0 3.…
Hadoop生态上几个技术的关系与区别:hive.pig.hbase 关系与区别 Pig 一种操作hadoop的轻量级脚本语言,最初又雅虎公司推出,不过现在正在走下坡路了.当初雅虎自己慢慢退出pig的维护之后将它开源贡献到开源社区由所有爱好者来维护.不过现在还是有些公司在用,不过我认为与其使用pig不如使用hive.:) 关系与区别  Pig"> Pig是一种数据流语言,用来快速轻松的处理巨大的数据. Pig包含两个部分:Pig Interface,Pig Latin. Pig可以非常方便…
1.了解对比Hadoop不同版本的特性,可以用图表的形式呈现. (1)0.20.0~0.20.2: Hadoop的0.20分支非常稳定,虽然看起来有些落后,但是经过生产环境考验,是 Hadoop历史上生命周期最长的一个分支,CDH3.CDH4虽然包含了0.21和0.22分支的新功能和补丁,但都是基于此分支. (2)0.20- append:020- append支持HDFS追加,由于该功能被认为是一个不稳定的潜在因素,所以它被单独新开了一个分支,并且没有任何新的 Hadoop的正式版基于此分支发…
Hadoop生态系统Hadoop1.x 的各项目介绍1. HDFS2. MapReduce3. Hive4. Pig5. Mahout6. ZooKeeper7. HBase8. Sqoop9. Flume10. Ambari Hadoop生态系统 当今的Hadoop已经成长为一个庞大的体系,只要有和海量数据相关的领域.都有Hadoop的身影. Hadoop生态系统图谱 大家知道,Hadoop的两大核心就是HDFS和MapReduce,而整个Hadoop的体系结构主要是通过HDFS的分布式存储作…
    Hadoop生态系统发展到现在,存储层主要由HDFS和HBase两个系统把持着,一直没有太大突破.在追求高吞吐的批处理场景下,我们选用HDFS,在追求低延迟,有随机读写需求的场景下,我们选用HBase,那么是否存在一种系统,能结合两个系统优点,同时支持高吞吐率和低延迟呢?有人尝试修改HBase内核构造这样的系统,即保留HBase的数据模型,而将其底层存储部分改为纯列式存储(目前HBase只能算是列簇式存储引擎),但这种修改难度较大.Kudu的出现有望解决这一难题. 想了解大数据的学习路线…
当发现作业运行效率不理想时,需要对作业执行进行性能监测,以及对作业本身.集群平台进行优化.优化后的集群可能最大化利用硬件资源,从而提高作业的执行效率.本文记录了在hadoop集群平台搭建以及作业运行过程中一些常用优化手段,在使用中会不断补充,不断翻阅. 一.对应用程序进行调优 1.避免输入大量小文件.大量的小文件(不足一个block大小)作为输入数据会产生很多的Map任务(默认一个分片对应一个Map任务),而每个Map任务实际工作量又非常小,系统要花更多的时间来将这些Map任务的输出进行整合.如…
Hadoop中的Map Reduce框架依赖InputFormat提供数据,依赖OutputFormat输出数据,每一个Map Reduce程序都离不开它们.Hadoop提供了一系列InputFormat和OutputFormat方便开发,本文介绍几种常用的: TextInputFormat 作为默认的文件输入格式,用于读取纯文本文件,文件被分为一系列以LF或者CR结束的行,key是每一行的位置偏移量,是LongWritable类型的,value是每一行的内容,为Text类型. KeyValue…