pandas - 异常值处理】的更多相关文章

import pandas as pd #生成异常数据 df=pd.DataFrame({'col1':[1,120,3,5,2,12,13], 'col2':[12,17,31,53,22,32,43]}) print(df) col1 col2 0 1 12 1 120 17 2 3 31 3 5 53 4 2 22 5 12 32 6 13 43 df_zscore=df.copy() #复制一个用来存储Z-score得分的数据框 cols=df.columns for col in co…
异常值概念:是指那些远离正常值的观测,即“不合群”观测.异常值的出现一般是人为的记录错误或者是设备的故障等,异常值的出现会对模型的创建和预测产生 严重的后果.当然异常值也不一定是坏事,有些情况下,通过寻找异常值就能够给业务带来良好的发展,如销毁“钓鱼”网站,关闭“薅羊毛”用户的权限等. 异常值的判定方法: 1.n个标准差法 2.箱线图法 标准差法,就是用以样本均值+样本标准差为基准,如果样本离平均值相差2个标准差以上的就是异常值 箱线图法:以上下四分位作为参考, x > Q3+nIQR 或者 x…
数据转换 移除重复数据 import pandas as pd import numpy as np from pandas import Series data = pd.DataFrame( {'k1':['one']*3+['two']*4, 'k2':[1,1,2,3,3,4,4]}) data k1 k2 0 one 1 1 one 1 2 one 2 3 two 3 4 two 3 5 two 4 6 two 4 duplicated方法返回一个布尔型Series,表示各行是否是重复…
pandas学习(常用数学统计方法总结.读取或保存数据.缺省值和异常值处理) 目录 常用数学统计方法总结 读取或保存数据 缺省值和异常值处理 常用数学统计方法总结 count 计算非NA值的数量 describe 针对Series或DataFrame列计算统计 min/max/sum 计算最小值 最大值 总和 argmin argmax 计算能够获取到最小值和最大值的索引位置(整数) idxmin idxmax 计算能够获取到最小值和最大值的索引值 quantile 计算样本的分位数(0到1)…
使用pandas进行数据清洗 本文转载自:蓝鲸的网站分析笔记 原文链接:使用python进行数据清洗 目录: 数据表中的重复值 duplicated() drop_duplicated() 数据表中的空值/缺失值 isnull()&notnull() dropna() fillna() 数据间的空格 查看数据中的空格 去除数据中的空格 大小写转换 数据中的异常和极端值 replace() 更改数据格式 astype() to_datetime() 数据分组 cut() 数据分列 split()…
手头现在有一份福布斯2016年全球上市企业2000强排行榜的数据,但原始数据并不规范,需要处理后才能进一步使用. 本文通过实例操作来介绍用pandas进行数据整理. 照例先说下我的运行环境,如下: windows 7, 64位 python 3.5 pandas 0.19.2版本 在拿到原始数据后,我们先来看看数据的情况,并思考下我们需要什么样的数据结果. 下面是原始数据: 在本文中,我们需要以下的初步结果,以供以后继续使用. 可以看到,原始数据中,跟企业相关的数据中(“Sales”,“Prof…
一.Pandas介绍 1.介绍 pandas 是基于NumPy 的一种工具,该工具是为了解决数据分析任务而创建的.Pandas 纳入了大量库和一些标准的数据模型,提供了高效地操作大型数据集所需的工具.pandas提供了大量能使我们快速便捷地处理数据的函数和方法.你很快就会发现,它是使Python成为强大而高效的数据分析环境的重要因素之一. 2.数据结构 Series:一维数组,与Numpy中的一维array类似.二者与Python基本的数据结构List也很相近.Series如今能保存不同种数据类…
内容目录 1. 什么是缺失值 2. 丢弃缺失值 3. 填充缺失值 4. 替换缺失值 5. 使用其他对象填充 数据准备 import pandas as pd import numpy as np index = pd.Index(data=["Tom", "Bob", "Mary", "James", "Andy", "Alice"], name="name") da…
背景 关于同一个话题,不同作者也有不同行文结构.但要真正理解并会用,在我的经验里,是必须要自己重新组织的. 本文是基于以往看过的资料,从自身数据处理应用的角度出发,重新组织pandas应用结构,希望能边梳理边掌握. 目录 1.dataframe&series 2.输入输出&常用函数 3.数据清洗 4.数据转换 5.高阶函数lamba 6.图 1.dataframe&series 2.输入输出&常用函数 3.数据清洗 查看各列情况(空值数.数据类型.异常值) 空值填充 数据类…
数据分析 生成器 迭代器 装饰器 (两层传参) 单例模式() ios七层 io多路 数据分析:是把隐藏在一些看似杂乱无章的数据背后的信息提炼出来,总结出所研究对象的内在规律 pandas的拼接操作 pandas的拼接分为两种: 级联:pd.concat, pd.append 合并:pd.merge, pd.join 使用pd.concat()级联 pandas使用pd.concat函数,与np.concatenate函数类似,只是多了一些参数: objs axis=0 join='outer'…