概率图模型(CPD)(二)】的更多相关文章

Talk is cheap, I show you the code 第一章的作业主要是关于PGM的因子操作.实际上,因子是整个概率图的核心.对于有向图而言,因子对应的是CPD(条件分布):对无向图而言,因子对应的是势函数.总而言之,因子是一个映射,将随机变量空间映射到实数空间.因子表现的是对变量之间关系的一种设计.每个因子都编码了一定的信息. 因子的数据结构: phi = struct('var', [3 1 2], 'card', [2 2 2], 'val', ones(1, 8)); 在…
1. 从贝叶斯方法(思想)说起 - 我对世界的看法随世界变化而随时变化 用一句话概括贝叶斯方法创始人Thomas Bayes的观点就是:任何时候,我对世界总有一个主观的先验判断,但是这个判断会随着世界的真实变化而随机修正,我对世界永远保持开放的态度. 1763年,民间科学家Thomas Bayes发表了一篇名为<An essay towards solving a problem in the doctrine of chances>的论文, 这篇论文发表后,在当时并未产生多少影响,但是在20…
概率图模型的作业越往后变得越来越有趣了.当然,难度也是指数级别的上涨啊,以至于我用了两个周末才完成秋名山神秘车牌的寻找,啊不,CRF模型的训练. 条件随机场是一种强大的PGM,其可以对各种特征进行建模,同时可以使用随机梯度下降算法进行训练,训练的结果就是PGM中那些定义变量交互方式的参数. 1.LR模型的训练 LR模型可以看作是CRF模型的低配版,在完全不定义随机变量交互,只考虑P(Y|X)的情况下,得到的就是LR模型.其数学表达如下: 这里theta是参数,X是特征也是像素值,该形式成为Log…
在前三周的作业中,我构造了概率图模型并调用第三方的求解器对器进行了求解,最终获得了每个随机变量的分布(有向图),最大后验分布(双向图).本周作业的主要内容就是自行编写概率图模型的求解器.实际上,从根本上来说求解器并不是必要的.其作用只是求取边缘分布或者MAP,在得到联合CPD后,寻找联合CPD的最大值即可获得MAP,对每个变量进行边缘分布求取即可获得边缘分布.但是,这种简单粗暴的方法效率极其低下,对于MAP求取而言,每次得到新的evidance时都要重新搜索CPD,对于单个变量分布而言,更是对每…
Week2的作业主要是关于概率图模型的构造,主要任务可以分为两个部分:1.构造CPD;2.构造Graph.对于有向图而言,在获得单个节点的CPD之后就可依据图对Combine CPD进行构造.在获得Combine CPD之后则可利用变量的观测来进行问答.此周作业的大背景是对基因型与表现型之间的关系进行探索.在已知表现性的情况下对基因型以及下一代的基因进行推测.这是一个很有实际意义的有向图网络. 1.CPD构造 1.1.基因型与表现型的关系——确定 在孟德尔遗传假说基础上,对双碱基配对的基因推测表…
本文简单整理了以下内容: (一)马尔可夫随机场(Markov random field,无向图模型)简单回顾 (二)条件随机场(Conditional random field,CRF) 这篇写的非常浅,基于 [1] 和 [5] 梳理.感觉 [1] 的讲解很适合完全不知道什么是CRF的人来入门.如果有需要深入理解CRF的需求的话,还是应该仔细读一下几个英文的tutorial,比如 [4] . (一)马尔可夫随机场简单回顾 概率图模型(Probabilistic graphical model,P…
作者:Scofield链接:https://www.zhihu.com/question/35866596/answer/236886066来源:知乎著作权归作者所有.商业转载请联系作者获得授权,非商业转载请注明出处. so far till now, 我还没见到过将CRF讲的个明明白白的.一个都没.就不能不抄来抄去吗?我打算搞一个这样的版本,无门槛理解的.——20170927 陆陆续续把调研学习工作完成了,虽然历时有点久,现在put上来.评论里的同学也等不及了时不时催我,所以不敢怠慢啊…… 总…
声明:本文转载自http://www.sigvc.org/bbs/thread-728-1-1.html,个人感觉是很好的PGM理论综述,高屋建瓴的总结了PGM的主要分支和发展趋势,特收藏于此. “概率模型与计算机视觉”林达华美国麻省理工学院(MIT)博士   上世纪60年代, Marvin Minsky 在MIT让他的本科学生 Gerald Jay Sussman用一个暑假的时间完成一个有趣的Project: “link a camera to a computer and get the c…
一.ML方法分类:          产生式模型和判别式模型 假定输入x,类别标签y         -  产生式模型(生成模型)估计联合概率P(x,y),因可以根据联合概率来生成样本:HMMs         - 判别式模型(判别模型)估计条件概率P(y|x),因为没有x的知识,无法生成样本,只能判断分类:SVMs,CRF,MEM 一个举例:   (1,0), (1,0), (2,0), (2, 1) 产生式模型: p(x,y): P(1, 0) = 1/2, P(1, 1) = 0 , P(…
原文链接(系列):http://blog.csdn.net/yangliuy/article/details/8067261 概率图模型(Probabilistic Graphical Model)系列来自Stanford公开课Probabilistic Graphical Model中Daphne Koller 老师的讲解.(https://class.coursera.org/pgm-2012-002/class/index) 主要内容包括(转载请注明原始出处http://blog.csdn…