http://172.20.6.3/Problem_Show.asp?id=1518最开始只想到了n^2的写法,肯定要超时的,所以要对求gcd的过程进行优化.首先是前缀和容斥,很好理解.第二个优化大致如下:u为莫比乌斯函数,t为gcd(x,y)为i的倍数的数的个数:满足gcd(x,y)=1的数字对的数量=sigma(1<=i<=min(x,y))u[i]*t[i];t[i]=(x/i)*(y-i);由小数向下取整可知有连续的i满足x/i为定值,y/i也是定值,所以可以分块计算,用u[i]的前缀…
题目描述 对于给出的n个询问,每次求有多少个数对(x,y),满足a≤x≤b,c≤y≤d,且gcd(x,y) = k,gcd(x,y)函数为x和y的最大公约数. 输入输出格式 输入格式: 第一行一个整数n,接下来n行每行五个整数,分别表示a.b.c.d.k 输出格式: 共n行,每行一个整数表示满足要求的数对(x,y)的个数 输入输出样例 输入样例#1: 复制 2 2 5 1 5 1 1 5 1 5 2 输出样例#1: 复制 14 3 说明 100%的数据满足:1≤n≤50000,1≤a≤b≤500…
//待更qwq 反演原理 二项式反演 若 \[g_i=\sum_{j=1}^i {\binom ij} f_j\] , 则有 \[ f_i=\sum_{j=1}^i (-1)^{i-j} {i \choose j} g_j \] 同时, 若 \[g_i=\sum_{j=1}^i (-1)^j {i \choose j} f_j\] , 则有 \[f_i=\sum_{j=1}^i (-1)^j {i \choose j} g_j\] 通过反演原理和组合数的性质不难证明. 0/1? todo Sti…
[LOJ#6374]网格(二项式反演,容斥) 题面 LOJ 要从\((0,0)\)走到\((T_x,T_y)\),每次走的都是一个向量\((x,y)\),要求\(0\le x\le M_x,0\le y\le M_y\),并且不能不走.同时有\(k\)个限制,表示不能同时\(x=y=k_i\),保证所有\(k_i\)都是\(G\)的倍数.求恰好跳了\(R\)步到达的方案数. 题解 如果不存在不能走的点的限制,那么两维可以分开考虑.比如接下来只考虑\(x\)上的问题. 因为存在步长的限制,所以设\…
给出n个数,给出m个询问,询问 区间[l,r] [u,v],在两个区间内分别取一个数,两个的和为k的对数数量. $k<=2*N$,$n <= 30000$ 发现可以容斥简化一个询问.一个询问的答案为 $[l,v]+(r,u)-[l,u)-(r,v]$,那么我们离线询问,将一个询问分成四个,分块暴力就行了. 然后就是注意细节,不要发生越界,访问错位置之类比较蠢的问题了. /** @Date : 2017-09-24 19:54:55 * @FileName: HDU 5213 分块 容斥.cpp…
题意:对于给出的n个询问,每次求有多少个数对(x,y),满足a≤x≤b,c≤y≤d,且gcd(x,y) = k,gcd(x,y)函数为x和y的最大公约数. 1≤n≤50000,1≤a≤b≤50000,1≤c≤d≤50000,1≤k≤50000 思路:莫比乌斯反演,ans=solve(b/k,d/k)-solve((a-1)/k,d/k)-solve(b/k,(c-1)/k)+solve((a-1)/k,(c-1)/k) 代码1:超时. #include<iostream> #include&l…
传送门:http://www.lydsy.com/JudgeOnline/problem.php?id=2301 很好的一道题.首先把每个询问转化为4个子询问,最后的结果就是这四个子询问的记过加加减减,类似二维前缀和.那么问题转化为在1 <= x <= lmtx, 1 <= y <= lmty时gcd(x, y) == k的对数,这个问题在转化一下,转化成1 <= x <= lmtx / k,1 <= y <= lmty / k时x与y互质的对数.莫比乌斯反…
传送门:2301: [HAOI2011]Problem b 题意:对于给出的n个询问,每次求有多少个数对(x,y),满足a≤x≤b,c≤y≤d,且gcd(x,y) = k,gcd(x,y)函数为x和y的最大公约数. 分析:gcd(x,y)==k等价于gcd(x/k,y/k)==1,根据莫比乌斯反演很容易求出[1,n][1,m]的gcd(x,y)==1的对数,但询问有50000个,直接去计算肯定会TLE,这里得分块处理加速计算,因为对于(n/i)和(m/i)在一定区间内的值是一定的,根据这点可以每…
题目链接:http://acm.hust.edu.cn/vjudge/problem/viewProblem.action?id=37166 题意:对于给出的n个询问,每次求有多少个数对(x,y),满足a≤x≤b,c≤y≤d,且gcd(x,y) = k,gcd(x,y)函数为x和y的最大公约数. 思路:本题使用莫比乌斯反演要利用分块来优化,那么每次询问的复杂度降为2*sqrt(n)+2*sqrt(m).注意到 n/i ,在连续的k区间内存在,n/i=n/(i+k).所有对这连续的区间可以一次求出…
4407: 于神之怒加强版 Time Limit: 80 Sec  Memory Limit: 512 MBSubmit: 1067  Solved: 494[Submit][Status][Discuss] Description 给下N,M,K.求     Input 输入有多组数据,输入数据的第一行两个正整数T,K,代表有T组数据,K的意义如上所示,下面第二行到第T+1行,每行为两个正整数N,M,其意义如上式所示. Output 如题 Sample Input 1 2 3 3 Sample…