参考: https://www.cnblogs.com/huangshiyu13/p/6209016.html https://zhuanlan.zhihu.com/p/25401928 https://blog.csdn.net/ustbfym/article/details/78870990 https://blog.csdn.net/StreamRock/article/details/81258543 https://blog.csdn.net/weixin_40955254/artic…
  本文简单介绍什么是贝叶斯深度学习(bayesian deep learning),贝叶斯深度学习如何用来预测,贝叶斯深度学习和深度学习有什么区别.对于贝叶斯深度学习如何训练,本文只能大致给个介绍.(不敢误人子弟)   在介绍贝叶斯深度学习之前,先来回顾一下贝叶斯公式. 贝叶斯公式 \[p(z|x) = \frac{p(x, z)}{p(x)} = \frac{p(x|z)p(z)}{p(x)} \tag{1}\] 其中,\(p(z|x)\) 被称为后验概率(posterior),\(p(x,…
      引言         深度学习,即Deep Learning,是一种学习算法(Learning algorithm),亦是人工智能领域的一个重要分支.从快速发展到实际应用,短短几年时间里,深度学习颠覆了语音识别.图像分类.文本理解等众多领域的算法设计思路,渐渐形成了一种从训练数据出发,经过一个端到端(end-to-end)的模型,然后直接输出得到最终结果的一种新模式.那么,深度学习有多深?学了究竟有几分?本文将带你领略深度学习高端范儿背后的方法与过程. 一.概述 Artificial…
变分自编码器(Variational Autoencoder, VAE)通俗教程 转载自: http://www.dengfanxin.cn/?p=334&sukey=72885186ae5c357d85d72afd35935fd5253f8a4e53d4ad672d5321379584a6b6e02e9713966e5f908dd7020bfa0c555f dengfanxin 未来2016年11月15日 1. 神秘变量与数据集 现在有一个数据集DX(dataset, 也可以叫datapoin…
深度学习加速器堆栈Deep Learning Accelerator Stack 通用张量加速器(VTA)是一种开放的.通用的.可定制的深度学习加速器,具有完整的基于TVM的编译器堆栈.设计了VTA来揭示主流深度学习加速器最显著和最常见的特征.TVM和VTA一起构成了一个端到端的软硬件深度学习系统堆栈,包括硬件设计.驱动程序.JIT运行时和基于TVM的优化编译器堆栈. VTA具有以下主要功能: 通用.模块化.开源硬件. 简化了部署到FPGA的工作流程. 模拟器支持原型编译通过常规工作站. 基于P…
题外话: From <白话深度学习与TensorFlow> 深度残差网络: 深度残差网络的设计就是为了克服这种由于网络深度加深而产生的学习效率变低,准确率无法有效提升的问题(也称为网络退化). 甚至在一些场景下,网络层数的增加反而会降低正确率.这种本质问题是由于出现了信息丢失而产生的过拟合问题(overfitting,所建的机器学习模型或者是深度学习模型在训练样本中表现的过于优越,导致在验证数据集及测试数据集中表现不佳,即为了得到一致假设而使假设变得过度复杂).解决思路是尝试着使他们引入这些刺…
转自https://zhuanlan.zhihu.com/p/25239682 过去的一段时间在深度强化学习领域投入了不少精力,工作中也在应用DRL解决业务问题.子曰:温故而知新,在进一步深入研究和应用DRL前,阶段性的整理下相关知识点.本文集中在DRL的model-free方法的Value-based和Policy-base方法,详细介绍下RL的基本概念和Value-based DQN,Policy-based DDPG两个主要算法,对目前state-of-art的算法(A3C)详细介绍,其他…
Posted by c cm on January 3, 2014 特征选择(feature selection)或者变量选择(variable selection)是在建模之前的重要一步.数据接口越来越多的今后,数据集的原始变量.衍生变量会越来越多,如何从中选取subset适用到模型之上在实际数据应用中十分重要. 信息值information value用来做特征选择最常用在计算信用评分卡时,是用来表示每一个变量对目标变量来说有多少"信息"的量. 对于一个分类变量性别,其计算过程如下…
来自:CVPR 2014   作者:Yi Sun ,Xiaogang Wang,Xiaoao Tang 题目:Deep Learning Face Representation from Predicting 10,000 Classes 主要内容:通过深度学习来进行图像高级特征表示(DeepID),进而进行人脸的分类. 长处:在人脸验证上面做,能够非常好的扩展到其它的应用,而且夸数据库有效性:在数据库中的类别越多时,其泛化能力越强,特征比較少,不像其它特征好几K甚至上M,好的泛化能力+只是拟合…
Jeremy Howard 在业界可谓大名鼎鼎.他是大数据竞赛平台 Kaggle 的前主席和首席科学家.他本人还是 Kaggle 的冠军选手.他是美国奇点大学(Singularity University)最年轻的教职工.曾于 2014 年,作为全球青年领袖,在达沃斯论坛上发表主题演讲.他在 TED 上的演讲 The wonderful and terrifying implications of computers that can learn 收获高达 200 万的点击.同时,他还创立了 E…