基于pandas的数据清洗】的更多相关文章

数据分析03 /基于pandas的数据清洗.级联.合并 目录 数据分析03 /基于pandas的数据清洗.级联.合并 1. 处理丢失的数据 2. pandas处理空值操作 3. 数据清洗案例 4. 处理重复的数据 5. 处理异常的数据 6. 级联 7. 合并操作 1. 处理丢失的数据 两种丢失的数据: 种类 None:None是对象类型,type(None):NoneType np.nan(NaN):是浮点型,type(np.nan):float 两种丢失数据的区别: object类型比floa…
基于pandas python的美团某商家的评论销售数据分析 第一篇 数据初步的统计 本文是该可视化系列的第二篇 第三篇 数据中的评论数据用于自然语言处理 导入相关库 from pyecharts import Bar,Pie import pandas as pd import numpy as np import matplotlib.pyplot as plt import time 数据清洗与简单统计 评论数据,其中包括一下几个字段 是否匿名,均价,评价(以去掉,后续会做一些关于这些评论…
使用pandas进行数据清洗 本文转载自:蓝鲸的网站分析笔记 原文链接:使用python进行数据清洗 目录: 数据表中的重复值 duplicated() drop_duplicated() 数据表中的空值/缺失值 isnull()&notnull() dropna() fillna() 数据间的空格 查看数据中的空格 去除数据中的空格 大小写转换 数据中的异常和极端值 replace() 更改数据格式 astype() to_datetime() 数据分组 cut() 数据分列 split()…
如何从基于pandas中某些列的值的DataFrame中选择行?在SQL中我将使用: select * from table where colume_name = some_value. 我试图看看熊猫文档,但没有立即找到答案.   要选择列值等于标量some​​_value的行,请使用==: df.loc[df['column_name'] == some_value] 要选择其列值在可迭代值some_values中的行,请使用isin: df.loc[df['column_name'].i…
在<用pandas进行数据清洗(一)(Data Analysis Pandas Data Munging/Wrangling)>中,我们介绍了数据清洗经常用到的一些pandas命令. 接下来看看这份数据的具体清洗步骤: Transaction_ID Transaction_Date Product_ID Quantity Unit_Price Total_Price 0 1 2010-08-21 2 1 30 30 1 2 2011-05-26 4 1 40 40 2 3 2011-06-16…
数据分析04 /基于pandas的DateFrame进行股票分析.双均线策略制定 目录 数据分析04 /基于pandas的DateFrame进行股票分析.双均线策略制定 需求1:对茅台股票分析 需求2:双均线策略制定 需求1:对茅台股票分析 茅台股票分析 使用tushare包获取某股票的历史行情数据. tushare:财经数据接口包 pip install tushare 输出该股票所有收盘比开盘上涨3%以上的日期. 输出该股票所有开盘比前日收盘跌幅超过2%的日期. 假如我从2010年1月1日开…
Abstract During the course fo doing data analysis and modeling, a significant amount of time is spend on data preparation: loading, cleaning, transforming, and rearrangin. 在整个数据分析建模过程中, 大量的时间(80%)的时间是用在了数据的预处理中, 如数据清洗, 加载, 标准化, 重塑等. Such tasks are of…
这里利用ben的项目(https://github.com/ben519/DataWrangling/blob/master/Python/README.md),在此基础上增添了一些内容,来演示数据清洗的主要工作. 以下是一份简单的交易数据,包括交易单号,交易日期,产品序号,交易数量,单价,总价. 准备工作:导入pandas import pandas as pd 读取数据: pd.read_excel(), pd.read_csv(), pd.read_json(), pd.read_sql(…
数据初步的分析 本文是该系列的第一篇 数据清洗 数据初步的统计 第二篇 数据可视化 第三篇 数据中的评论数据用于自然语言处理 from pyecharts import Bar,Pie import pandas as pd import numpy as np import matplotlib.pyplot as plt import time df=pd.read_excel("all_data_meituan.xlsx") df.head(2) .dataframe tbody…
本文转载自:蓝鲸的网站分析笔记 原文链接:使用python进行数据清洗 目录: 数据表中的重复值 duplicated() drop_duplicated() 数据表中的空值/缺失值 isnull()&notnull() dropna() fillna() 数据间的空格 查看数据中的空格 去除数据中的空格 大小写转换 数据中的异常和极端值 replace() 更改数据格式 astype() to_datetime() 数据分组 cut() 数据分列 split() 数据清洗是一项复杂且繁琐(ku…