光流算法:Brox算法(转载)】的更多相关文章

iDT算法是行为识别领域中非常经典的一种算法,在深度学习应用于该领域前也是效果最好的算法.由INRIA的IEAR实验室于2013年发表于ICCV.目前基于深度学习的行为识别算法效果已经超过了iDT算法,但与iDT的结果做ensemble总还是能获得一些提升.所以这几年好多论文的最优效果都是"Our method+iDT"的形式. 此前由于项目原因,对iDT算法进行了很多研究和实验,故此处对其核心思路与一些实施的细节进行总结,方便后续回顾,也希望能够在此过程中获得一些新的启发. 介绍的内…
hash在开发由频繁使用.今天time33也许最流行的哈希算法. 算法: 对字符串的每一个字符,迭代的乘以33 原型: hash(i) = hash(i-1)*33 + str[i] ; 在使用时.存在一个问题,对相似的字符串生成的hashcode也类似,有人提出对原始字符串.进行MD5.然后再计算hashcode. 參考: <大型站点技术架构:核心原则和案例研究> 版权声明:本文博客原创文章.博客,未经同意,不得转载.…
        暑假,小哼准备去一些城市旅游.有些城市之间有公路,有些城市之间则没有,如下图.为了节省经费以及方便计划旅程,小哼希望在出发之前知道任意两个城市之前的最短路程.         上图中有4个城市8条公路,公路上的数字表示这条公路的长短.请注意这些公路是单向的.我们现在需要求任意两个城市之间的最短路程,也就是求任意两个点之间的最短路径.这个问题这也被称为“多源最短路径”问题.         现在需要一个数据结构来存储图的信息,我们仍然可以用一个4*4的矩阵(二维数组e)来存储.比如…
0.补充知识向量点积:结果等于0, 两向量垂直; 结果大于0, 两向量夹角小于90度; 结果小于0, 两向量夹角大于90度.直线的参数方程:(x1, y1)和(x2, y2)两点确定的直线, 其参数方程为x = x1+u(x2-x2); y = y1+u(y2-y1) 1.前言Liang-Barsky算法是 Cyrus-Beck 算法的特例, 我们先来简单的了解Cyrus-Beck算法, Cyrus-Beck算法本质是每次通过裁剪窗口(任意凸多边形, 文章最后会说明为什么凹多边形不行)的一条边界…
       上周我们介绍了神奇的只有五行的Floyd最短路算法,它可以方便的求得任意两点的最短路径,这称为“多源最短路”.本周来来介绍指定一个点(源点)到其余各个顶点的最短路径,也叫做“单源最短路径”.例如求下图中的1号顶点到2.3.4.5.6号顶点的最短路径.           与Floyd-Warshall算法一样这里仍然使用二维数组e来存储顶点之间边的关系,初始值如下.           我们还需要用一个一维数组dis来存储1号顶点到其余各个顶点的初始路程,如下.          …
        暑假,小哼准备去一些城市旅游.有些城市之间有公路,有些城市之间则没有,如下图.为了节省经费以及方便计划旅程,小哼希望在出发之前知道任意两个城市之前的最短路程.         上图中有4个城市8条公路,公路上的数字表示这条公路的长短.请注意这些公路是单向的.我们现在需要求任意两个城市之间的最短路程,也就是求任意两个点之间的最短路径.这个问题这也被称为“多源最短路径”问题.         现在需要一个数据结构来存储图的信息,我们仍然可以用一个4*4的矩阵(二维数组e)来存储.比如…
转载https://zhuanlan.zhihu.com/p/53482103 这哥们写的好,顺便转过来吧,当做学习用. 分布式快照算法: Chandy-Lamport 算法 0. 引言 Spark 的 Structured Streaming 的 Continuous Processing Mode 的容错处理使用了分布式快照(Distributed Snapshot)算法 Chandy-Lamport 算法,那么分布式快照算法可以用来解决什么问题呢? A snapshot algorithm…
1.EM算法 GMM算法是EM算法族的一个具体例子. EM算法解决的问题是:要对数据进行聚类,假定数据服从杂合的几个概率分布,分布的具体参数未知,涉及到的随机变量有两组,其中一组可观测另一组不可观测.现在要用最大似然估计得到各分布参数. 如果涉及的两组随机变量都是可观测的,问题就立即可以解决了,对似然函数求取最大值就能得到分布参数的解. EM算法先为所需求取的分布参数赋初值,使得能算出隐藏变量的期望:进而用隐藏变量的期望和可观测变量的数据对分布参数的似然函数求最大值,得到一组解从而更新分布参数.…
简单易学的机器学习算法——EM算法 一.机器学习中的参数估计问题 在前面的博文中,如“简单易学的机器学习算法——Logistic回归”中,采用了极大似然函数对其模型中的参数进行估计,简单来讲即对于一系列样本,Logistic回归问题属于监督型学习问题,样本中含有训练的特征以及标签,在Logistic回归的参数求解中,通过构造样本属于类别和类别的概率: 这样便能得到Logistic回归的属于不同类别的概率函数: 此时,使用极大似然估计便能够估计出模型中的参数.但是,如果此时的标签是未知的,称为隐变…
一,问题描述 在英文单词表中,有一些单词非常相似,它们可以通过只变换一个字符而得到另一个单词.比如:hive-->five:wine-->line:line-->nine:nine-->mine..... 那么,就存在这样一个问题:给定一个单词作为起始单词(相当于图的源点),给定另一个单词作为终点,求从起点单词经过的最少变换(每次变换只会变换一个字符),变成终点单词. 这个问题,其实就是最短路径问题. 由于最短路径问题中,求解源点到终点的最短路径与求解源点到图中所有顶点的最短路径复…