TSP 的遗传算法】的更多相关文章

TSP问题最简单的求解方法是枚举法. 它的解是多维的.多局部极值的.趋于无穷大的复杂解的空间.搜索空间是n个点的全部排列的集合.大小为(n-1)! .能够形象地把解空间看成是一个无穷大的丘陵地带,各山峰或山谷的高度即是问题的极值.求解TSP,则是在此不能穷尽的丘陵地带中攀登以达到山顶或谷底的过程. 这一篇将用遗传算法解决TSP问题. 1)评价. 这个评价算法应该比較简单了,就是找计算总距离,小的为优.目标函数转化为适应度函数能够取倒数. 2)突变.为了防止反复訪问,不能随机的进行突变.由于每一个…
写了半天,效率还是有点低的,以后有空再优化下: //用次序表示法来表示个体编码 #include<iostream> #include<fstream> #include<stdlib.h> #include<time.h> using namespace std; struct individual{ ]; int p; //1-p为可以进行杂交的概率 }; int n; //城市的数量 ][]; //城市之间的距离 individual group[];…
该代码是本人根据B站up主侯昶曦的代码所修改的. 原代码github地址:https://github.com/Houchangxi/heuristic-algorithm/blob/master/TSP问题遗传算法/Genetic Algorithm.py 遗传算法步骤不用讲了,将再多还是不会写代码,倒不如花一上午读懂下面的代码.不仅明白了具体步骤还能写出代码. #!/usr/bin/env python # coding: utf-8 # Author:侯昶曦 & 孟庆国 # Date:20…
嗯哼,第一次写博客,准确说是第一次通过文字的方式记录自己的工作,闲话少叙,技术汪的博客就该直奔技术主题(关于排版问题,会在不断写博客的过程中慢慢学习,先将就着用吧,重在技术嘛~~~). 遗传算法(Genetic Algorithm, GA),作为很多人接触智能优化算法的第一个算法,互联网上关于遗传算法的资料不可谓不多,但由于其不是本文的重点,故在此不过细展开,只简单说下大概思想:根据现代生物学理论 “物竞天择,适者生存” 原理,不断淘汰适应能力差的个体,模拟生物进化过程.大致步骤为: 生成一个初…
上一次我们使用遗传算法求解了一个较为复杂的多元非线性函数的极值问题,也基本了解了遗传算法的实现基本步骤.这一次,我再以经典的TSP问题为例,更加深入地说明遗传算法中选择.交叉.变异等核心步骤的实现.而且这一次解决的是离散型问题,上一次解决的是连续型问题,刚好形成对照. 首先介绍一下TSP问题.TSP(traveling salesman problem,旅行商问题)是典型的NP完全问题,即其最坏情况下的时间复杂度随着问题规模的增大按指数方式增长,到目前为止还没有找到一个多项式时间的有效算法.TS…
上篇我们用遗传算法求解了方程,其中用到的编码方式是二进制的编码,实现起来相对简单很多, 就连交配和变异等操作也是比较简单,但是对于TSP问题,就稍微复杂一点,需要有一定的策略, 才能较好的实现. 这次的TSP问题的题目是: 随机产生10~30个城市,每个城市之间的距离也是随机产生,距离的范围是[1,50],求最优的路径 ========================================================== 下面就是具体的求解,由于我的策略是基于知网上的<一种改进的遗…
1.编码 这篇文章中遗传算法对TSP问题的解空间编码是十进制编码.如果有十个城市,编码可以如下: 0 1 2 3 4 5 6 7 8 9 这条编码代表着一条路径,先经过0,再经过1,依次下去. 2.选择 选择操作仍然是轮盘赌模型,虽然不会出现路径长度为负数的情况,但是需要考虑与上篇文章不同的是求的是最小值.因此在代码中概率的计算为: 3.交叉 4.变异 变异操作就是交换两个城市,例如: 0 1 2 3 4 0 2 1 3 4 5.代码实现 #include<stdio.h> #include&…
这次的文章是以一份报告的形式贴上来,代码只是简单实现,难免有漏洞,比如循环输入的控制条件,说是要求输入1,只要输入非0就行.希望会帮到以后的同学(*^-^*) 一.问题描述 旅行商问题(Traveling-Salesman Problem,TSP).设有n个互相可直达的城市,某推销商准备从其中的A城出发,周游各城市一遍,最后又回到A城.要求为该旅行商规划一条最短的旅行路线. 二.目的 为了解决旅行商问题,用了遗传算法,模拟染色体的遗传过程,进行求解. 为了直观的更有比较性的观察到程序的运行效果,…
摘要: 本实验采用遗传算法实现了旅行商问题的模拟求解,并在同等规模问题上用最小生成树算法做了一定的对比工作.遗传算法在计算时间和占用内存上,都远远优于最小生成树算法. 程序采用Microsoft visual studio 2008 结合MFC基本对话框类库开发.32位windows 7系统下调试运行. 引言 遗传算法(Genetic Algorithm)是模拟达尔文生物进化论的自然选择和遗传学机理的生物进化过程的计算模型,是一种通过模拟自然进化过程搜索最优解的方法,由密歇根大学的约翰•霍兰德和…
近期为做展示,改写了一个遗传算法求TSP的Java界面版,思路代码和 http://blog.csdn.net/wangqiuyun/article/details/12838903 这篇文章思路是一样的,追加了Java用Graphics画点及画线做路径展示,展示部分做得比較粗糙,须要的拿走,效果图例如以下. 下载地址:http://download.csdn.net/detail/wangqiuyun/7406201 另C#界面版:http://blog.csdn.net/wangqiuyun…