NC53079 Forsaken喜欢数论】的更多相关文章

牛客小白月赛18 Forsaken喜欢数论 题目传送门直接点标题 ​ Forsaken有一个有趣的数论函数.对于任意一个数xxx,f(x)f(x)f(x)会返回xxx的最小质因子.如果这个数没有最小质因子,那么就返回0. ​ 现在给定任意一个nnn,Forsaken想知道\(∑i=1nf(i)\sum_{i = 1}^{n}{f(i)}∑i=1nf(i)\)的值. ​ 输入描述: 一个整数nnn. 输出描述: 一个整数代表上面的求和式的值. 示例1 输入 复制 4 输出 复制 7 备注: 1≤n…
链接:https://ac.nowcoder.com/acm/contest/1221/A来源:牛客网 时间限制:C/C++ 1秒,其他语言2秒 空间限制:C/C++ 524288K,其他语言1048576K 64bit IO Format: %lld 题目描述         Forsaken有一个有趣的数论函数.对于任意一个数xxx,f(x)f(x)f(x)会返回xxx的最小质因子.如果这个数没有最小质因子,那么就返回0.         现在给定任意一个nnn,Forsaken想知道∑i=…
题目描述 Koishi十分喜欢数论. 她的朋友Flandre为了检测她和数论是不是真爱,给了她一个问题. 已知 给定和个数,求对取模. 按照套路,呆萌的Koishi当然假装不会做了,于是她来向你请教这个问题,希望你能在秒内给她答案. 输入输出格式 输入格式: 第一行包含两个整数和,接下来一行个整数表示. 输出格式: 一个整数,表示答案 输入输出样例 输入样例#1: 3 5 1 2 4 5 0 输出样例#1: 44044 说明 表示若干个数的最小公倍数 对于10%的数据: 对于另外20%的数据:…
1141 越来越喜欢数论了 很有意思 先看个RSA的介绍 RSA算法是一种非对称密码算法,所谓非对称,就是指该算法需要一对密钥,使用其中一个加密,则需要用另一个才能解密. RSA的算法涉及三个参数,n.e1.e2. 其中,n是两个大质数p.q的积,n的二进制表示时所占用的位数,就是所谓的密钥长度. e1和e2是一对相关的值,e1可以任意取,但要求e1与(p-1)*(q-1)互质:再选择e2,要求(e2*e1)mod((p-1)*(q-1))=1. (n,e1),(n,e2)就是密钥对.其中(n,…
我还是很喜欢数论,从此吃喝不问,就此沉沦. 欧拉函数φ(x)的值为在[1,x)的区间内与x互质的数的个数 通式:    其中p1, p2……pn为x的所有质因数,x是不为0的整数.φ(1)=1. 注意:每种质因数只一个. 比如12=2*2*3那么φ(12)=12*(1-1/2)*(1-1/3)=4 介绍几个性质: 1.若n是质数p的k次幂,则,因为除了p的倍数外,其他数都跟n互质. 2.积性函数——若m,n互质,. 3.当n为质数时, , 其实与上述类似. 4.若n为质数则, 这个挺重要的. 5…
题目链接:http://codeforces.com/problemset/problem/977/E 题意:就是给你相连边,让你求图内有几个环. 题解:我图论很差,一般都不太会做图论的题.QAQ看官方题解过的.大概就是如果这是一个环的话,每一个点的度数都应该是2才对,根据这个进行dfs做标记. 就算是个简单图论,看到还是会一脸懵逼.QWQ.以后还是会多多写dfs和图论啦.不过个人还是更喜欢数论什么的. #include<iostream> #include<vector> usi…
题目:http://www.tsinsen.com/A1504 A1504. Book(王迪) 时间限制:1.0s   内存限制:256.0MB   Special Judge 总提交次数:359   AC次数:97   平均分:43.76   将本题分享到:        查看未格式化的试题   提交   试题讨论 试题来源 2013中国国家集训队第二次作业 问题描述 Wayne喜欢看书,更喜欢买书. 某天Wayne在当当网上买书,买了很多很多书.Wayne有一个奇怪的癖好,就是第一本书的价格…
BZOJ_4176_Lucas的数论_杜教筛+莫比乌斯反演 Description 去年的Lucas非常喜欢数论题,但是一年以后的Lucas却不那么喜欢了. 在整理以前的试题时,发现了这样一道题目“求Sigma(f(i)),其中1<=i<=N”,其中 表示i的约数个数.他现在长大了,题目也变难了. 求如下表达式的值:   其中 表示ij的约数个数. 他发现答案有点大,只需要输出模1000000007的值. Input 第一行一个整数n. Output 一行一个整数ans,表示答案模100000…
正解:数论 解题报告: 先,放个传送门QwQ 这题难点可能在理解题意,,, 所以我先放个题意QAQ 大概就是说,给定一个整数N,可以被拆成两个质数的成绩p*q,然后给出了一个数e,求d满足e*d=1(mod r),其中r=(p-1)*(q-1),最后还会给定一个c,求dc%N umm就是几个板子题的堆砌昂,,,首先pollard_rho找到pq求出r,然后逆元求出d,最后快速幂走一波 然后就做完辣!over! 然后这里注意一下,就我个人的习惯的话我很喜欢快速幂求逆元,,,因为很简单很无脑,,,但…
为什么老是碰上 扩展欧几里德算法 ( •̀∀•́ )最讨厌数论了 看来是时候学一学了 度娘百科说: 首先, ax+by = gcd(a, b) 这个公式肯定有解 (( •̀∀•́ )她说根据数论中的相关定理可以证明,反正我信了) 所以 ax+by = gcd(a, b) * k 也肯定有解 (废话,把x和y乘k倍就好了) 所以,这个公式我们写作ax+by = d,(gcd(a, b) | d) gcd(a, b) | d,表示d能整除gcd,这个符号在数学上经常见 那么已知 a,b 求 一组解…