T1 Dove玩扑克 考场并查集加树状数组加桶期望$65pts$实际$80pts$,考后多开个数组记哪些数出现过,只扫出现过的数就切了.用$set$维护可以把被删没的数去掉,更快. $code:$ 1 #include<bits/stdc++.h> 2 #define int long long 3 using namespace std; 4 const int NN=1e5+5; 5 int n,m,op,x,y,fa[NN],siz[NN],sum,cnt[NN],nums[NN]; 6…
背景 时间分配与得分成反比,T1 20min 73pts,T2 1h 30pts,T3 2h 15pts(没有更新tot值,本来应该是40pts的,算是本次考试中最遗憾的地方了吧),改起来就是T3比较难改,其他的还好... 两位队爷没考,战神也出了点意外,让我们这些菜鸡钻了空子. 多组数据一定要清零 T1 匹配 前言 我就没想到模拟赛会出这种水题,正解的话hash与KMP都可以,只可惜我只留下20分钟给这题,实力有限,时间有限,就草草打了个暴力.出乎意料整到了\(73pts\)属实出乎意料..…
T1 自然数 发现\(mex\)是单调不降的,很自然地想到用线段树维护区间端点的贡献. 枚举左端点,用线段树维护每个右端点形成区间的\(mex\)值.每次左端点右移相当于删去一个数. 记\(a_i\)在\(i\)下一次出现的位置为\(pos_i\),那么左端点\(i\)移到\(i+1\),实际上就是将左端点在\([i,pos_i)\)的区间中\(mex\)值大于\(a_i\)的改为\(a_i\).线段树上二分可以解决,中途要记区间最小值便于二分. \(code:\) T1 #include<bi…
6.17考试总结(NOIP模拟8) 背景 考得不咋样,有一个非常遗憾的地方:最后一题少取膜了,\(100pts->40pts\),改了这么多年的错还是头一回看见以下的情景... T1星际旅行 前言 考试的时候用一个自己感觉非常妙的思路骗了20pts,因为是双向边,所以分成两个边存,边的tot从2开始,这样可以保证没一组边的序号通过取\(xor\)可以相互转化. 然后对于每一个边记录经过次数,并且记一下经过次数为1和2的边的总数,然后对于dfs时转移的就是状压的每组边的状态,当然也可以拿Hash存…
5.23考试总结(NOIP模拟2) 洛谷题单 看第一题第一眼,不好打呀;看第一题样例又一眼,诶,我直接一手小阶乘走人 然后就急忙去干T2T3了 后来考完一看,只有\(T1\)骗到了\(15pts\)[尴尬\(.jpg\)] \(T1\)P3322 [SDOI2015]排序 背景 说实话,看见这题正解是dfs的那一刻,我人都傻了[流泪.jpg] 在讲这题的时候赵队@yspm 类比了线段树的思想%%%%%,在食用本篇题解时可以想一下 解题思路 最基本的一个思想:结果与操作的顺序无关,因为在更换的时候…
5.22考试总结(NOIP模拟1) 改题记录 T1 序列 题解 暴力思路很好想,分数也很好想\(QAQ\) (反正我只拿了5pts) 正解的话: 先用欧拉筛把1-n的素数筛出来 void get_Prime() { for(int i=2;i<=M;i++) { if(!b[i]) pri[++tot]=i; for(int j=1;j<=tot&&i*pri[j]<=M;j++) { b[i*pri[j]]=true; if(!(i%pri[j])) break; }…
9.1 辣鸡 可以把答案分成 每个矩形内部连线 和 矩形之间的连线 两部分 前半部分即为\(2(w-1)(h-1)\),后半部分可以模拟求(就是讨论四种相邻的情况) 如果\(n^2\)选择暴力模拟是有\(35pts\)的 发现按横坐标排序后,如果有一矩形与当前矩形横向不相邻,则之后矩形都是没有贡献的 所以枚举时比较横坐标视情况跳出 因为会产生贡献的矩形对并不多(不超过\(4e5\),具体还会小),所以这样优化以后可以通过 9.2 模板 暴力跳祖先的话是有\(30pts\)的,经过一番纯玄学特判可…
刚题的习惯还是改不了,怎么办??? T1 Dove打扑克 考场上打的动态开点线段树+并查集,考后发现自己像一个傻子,并查集就行.. 这几天恶补数据结构疯了 用树状数组维护后缀和,$siz_i$表示编号为$i$的牌堆的卡牌个数,并使用桶记录一下这种数量级的牌堆的个数 同时使用$set$维护一下还存在的牌堆的编号 在合并的时候按照题目原理对各种维护数组加加减减操作就行,注意在一类数量级的桶没有东西之后,要将$set$中的相应元素删掉 查询的时候遍历$set$中的元素,查询即可. 1 #include…
有的考试表面上自称NOIP模拟,背地里却是绍兴一中NOI模拟 吓得我直接文件打错 T1 Skip 设状态$f_i$为最后一次选$i$在$i$时的最优解.有$f_i=max_{j<i}[f_j+a_i-\frac{(j-i)\times (j-i-1)}{2}]$ 设$j<k$,对$i$来说,$k$优于$j$,当且仅当$2\times i>\frac{2\times(f_j-f_k)+k^2+k-j^2-j}{k-j}$ 斜率优化,$CDQ$分治,先按$a$排序,分治中按$id$排序满足限…
因为考试过多,所以学校的博客就暂时咕掉了,放到家里来写 不过话说,vscode的markdown编辑器还是真的很好用 先把 \(noip\) 模拟 \(23\) 的总结写了吧.. 俗话说:"连胜之后必是连败,连败之后必是连胜". 经过之前连续五场比赛的挂分,终于回来了一点点... 菜我还是... 咱也不知道当时的零分是怎么考出来的.... \(\color{green}{\huge{\text{菜}}}\) ........ 好吧...... 每次考爆炸的时候在赛后总会发现自己的题目还…