SIFT特征匹配算法介绍】的更多相关文章

原文路径:https://www.learnopencv.com/histogram-of-oriented-gradients/ 按语:偶得SIFT特征匹配算法原理介绍,此文章确通俗易懂,分享之! 1.图像尺度空间 在了解图像特征匹配前,需要清楚,两张照片之所以能匹配得上,是因为其特征点的相似度较高. 而寻找图像特征点,我们要先知道一个概念,就是“图像尺度空间”. 平时生活中,用人眼去看一张照片时,随着观测距离的增加,图像会逐渐变得模糊.那么计算机在“看”一张照片时,会从不同的“尺度”去观测照…
1.SIFT概述 SIFT的全称是Scale Invariant Feature Transform,尺度不变特征变换,由加拿大教授David G.Lowe提出的.SIFT特征对旋转.尺度缩放.亮度变化等保持不变性,是一种非常稳定的局部特征. 1.1 SIFT算法具的特点 图像的局部特征,对旋转.尺度缩放.亮度变化保持不变,对视角变化.仿射变换.噪声也保持一定程度的稳定性. 独特性好,信息量丰富,适用于海量特征库进行快速.准确的匹配. 多量性,即使是很少几个物体也可以产生大量的SIFT特征 高速…
新手上路,先转载学习tornadomeet的博客:http://www.cnblogs.com/tornadomeet/archive/2012/08/16/2643168.html 特征点检测学习_1(sift算法) sift算法在cv领域的重要性不言而喻,该作者的文章引用率在cv界是number1.本篇博客只是本人把sift算法知识点整理了下,以免忘记.本文比较早的一篇博文opencv源码解析之(3):特征点检查前言1 中有使用opencv自带的sift做了个简单的实验,而这次主要是利用Ro…
SIFT特征原理与理解 SIFT(Scale-invariant feature transform)尺度不变特征变换 SIFT是一种用来侦测和描述影像中局部性特征的算法,它在空间尺度中寻找极值点,并提取出其位置.尺度.旋转不变量. SIFT特征是基于物体上的一些局部外观的兴趣点而与影像的大小和旋转无关.使用 SIFT特征描述对于部分物体遮蔽的侦测率也相当高,甚至只需要3个以上的SIFT物体特征就足以计算出位置与方位. SIFT算法的特点 SIFT特征是图像的局部特征,其对旋转.尺度缩放.亮度变…
已经有很多博客已经将sift特征提取算法解释的很清楚了,我只是记录一些我不明白的地方,并且记录几个理解sift特征比较好的博客. 1. http://aishack.in/tutorials/sift-scale-invariant-feature-transform-introduction/ 2. http://blog.csdn.net/abcjennifer/article/details/7639681/ 3.http://blog.csdn.net/xiaowei_cqu/artic…
利用opencv2.3来获取图片的sift特征,并输出到标准输出,可用重定向到文件. #include<cstdio> #include"opencv2/opencv.hpp" #include"opencv2/nonfree/nonfree.hpp" using namespace cv ; int main(){ Mat m = imread("test.jpg"); SIFT sift; vector<KeyPoint&g…
opencv在2.4.4版本以后添加了对java的最新支持,可以利用java api了.下面就是我利用opencv的java api 提取图片的sift特征. import org.opencv.core.Core; import org.opencv.core.Mat; import org.opencv.core.MatOfKeyPoint; import org.opencv.highgui.Highgui; import org.opencv.features2d.*; public c…
SIFT(Scale Invariant Feature Transform),尺度空间不变特征,目前手工设计的最好vision特征. 以下是学习http://blog.csdn.net/zddblog/article/details/7521424后的收获. 一.尺度空间 gaussian pyramid的产生: 1.为避免对第一组第一层图片(原始图片)做高斯滤波导致损失,在其基础上将尺度扩大一倍作为-1层,方法是用=0.5做高斯滤波. 2.对每组(octave)倒数第三张图片做降采样,产生下…
基于SIFT特征的全景图像拼接 分类: image Machine learning2013-07-05 13:33 2554人阅读 评论(3) 收藏 举报 基于SIFT特征的全景图像拼接 分类: 计算机视觉/OpenCV2013-07-04 21:43 91人阅读 评论(0) 收藏 举报 主要分为以下几个步骤: (1) 读入两张图片并分别提取SIFT特征 (2) 利用k-d tree和BBF算法进行特征匹配查找 (3) 利用RANSAC算法筛选匹配点并计算变换矩阵 (3) 图像融合 SIFT算…
1.cv2.drawMatches(imageA, kpsA, imageB, kpsB, matches[:10], None, flags=2)  # 对两个图像关键点进行连线操作 参数说明:imageA和imageB表示图片,kpsA和kpsB表示关键点, matches表示进过cv2.BFMatcher获得的匹配的索引值,也有距离, flags表示有几个图像 书籍的SIFT特征点连接: 第一步:使用sift.detectAndComputer找出关键点和sift特征向量 第二步:构建BF…