OpenCV4系列之图像梯度和边缘检测】的更多相关文章

在图像处理中,求解图像梯度是常用操作. Sobel算子 Calculates the first, second, third, or mixed image derivatives using an extended Sobel operator. Sobel 算子是一种离散性差分算子,用来计算图像像素值的一阶.二阶.三阶或混合梯度.在图像的任何一点使用此算子,将会产生对应的灰度矢量或是其法矢量. C++: , , , int borderType=BORDER_DEFAULT ) C: )…
opencv-学习笔记(6)图像梯度Sobel以及canny边缘检测 这章讲了 sobel算子 scharr算子 Laplacion拉普拉斯算子 图像深度问题 Canny检测 图像梯度 sobel算子和scharr算子 sobel算子是高斯平滑与微分操作的结合体,所以它的抗噪声能力很强 我们可以设定求导的方向xorder或者yorder.也可以设置卷积核的大学 Ps当我们设置卷积核的大小为ksize=-1时候,这个函数会用 3*3的scharr算子如下 官方推荐在使用3*3滤波器时候要用scha…
一.图像梯度算法 1.图像梯度-Sobel算子 dst = cv2.Sobel(src, ddepth, dx, dy, ksize) ddepth:图像的深度 dx和dy分别表示水平和竖直方向 ksize是Sobel算子的大小 # *******************图像梯度算法**********************开始 import cv2 # import numpy as np img = cv2.imread('pie.png',cv2.IMREAD_GRAYSCALE) cv…
简介:图像梯度可以把图像看成二维离散函数,图像梯度其实就是这个二维离散函数的求导. Sobel算子是普通一阶差分,是基于寻找梯度强度.拉普拉斯算子(二阶差分)是基于过零点检测.通过计算梯度,设置阀值,得到边缘图像. 以下各种算子的原理可参考:https://blog.csdn.net/poem_qianmo/article/details/25560901 一.Sobel算子 代码如下: import cv2 as cv #Sobel算子 def sobel_demo(image): grad_…
图像梯度的算法有很多方法:sabel算子,scharr算子,laplacian算子,sanny边缘检测(下个随笔)... 这些算子的原理可参考:https://blog.csdn.net/poem_qianmo/article/details/25560901 下面是我的一些理解: sabel算子: sobel算子主要用于获得数字图像的一阶梯度,常见的应用和物理意义是边缘检测. 函数: Python: cv2.Sobel(src, ddepth, dx, dy[, dst[, ksize[, s…
1.图像锐化理论基础 1.锐化的概念 图像锐化的目的是使模糊的图像变得清晰起来,主要用于增强图像的灰度跳变部分,这一点与图像平滑对灰度跳变的抑制正好相反.而且从算子可以看出来,平滑是基于对图像领域的加权求和或者说积分运算的,而锐化则是通过其逆运算导数(梯度)或者说有限差分来实现的. 2.图像的一阶微分和二阶微分的性质 图像的锐化也就是增强图像的突变部分,那么我们也就对图像的恒定区域中,突变的开始点与结束点(台阶和斜坡突变)及沿着灰度斜坡处的微分的性质.微分是对函数局部变化率的一种表示,那么对于一…
形态学转换 腐蚀 img = cv2.imread() kernel = np.ones((,),np.uint8) erosion = cv2.erode(img,kernel,iterations = ) 膨胀 dilation = cv2.dilate(img,kernel,iterations = ) 先进性腐蚀再进行膨胀就叫做开运算.就像我们上面介绍的那样,它被用来去除噪声.这里我们用到的函数是 cv2.morphologyEx(). opening = cv2.morphologyE…
//从视频文件中读入数据-->将数据转换为灰度图-->对图像做canny边缘检测-->将这三个结构显示在一个图像中 //作者:sandy //时间:2015-10-10 #include <cv.h> #include <highgui.h> #include<stdarg.h> #include <iostream> void showThreeImage(char *title,int num,...){ //声明变量 IplImage…
Saliency Maps 这部分想探究一下 CNN 内部的原理,参考论文 Deep Inside Convolutional Networks: Visualising Image Classification Models and Saliency Maps. 一般我们反向传播 CNN 的时候,是可以得到图片的梯度(Image Gradient)的,但是因为网络要学习的参数是权重 W,因此都不会用到这个梯度.这篇论文可视化了一下图片的梯度,称作是 saliency map,发现其实是网络对不…
学习图像梯度,图像边界等 梯度简单来说就是求导. OpenCV提供了三种不同的梯度滤波器,或者说高通滤波器:Sobel,Scharr和Lapacian.Sobel,Scharr其实就是求一阶或二阶导.Scharr是对Sobel的部分优化.Laplacian是求二阶导. 1.Sobel算子和Scharr算子 Sobel算子是高斯平滑和微分操作的结合体,所以他的抗噪声能力很好.你可以设定求导的方向(xorder 或 yorder).还可以设定使用的卷积核大小(ksize).当ksize=-1时,会使…