ACM中的取模】的更多相关文章

取模本身的性质:(之前有一篇博客写过)三则运算(+,-,*)过程中的取模与最后的取模一样(前提是最后不超long long(或int) 范围,所以为防止超范围,直接对三则运算中的过程取模) 然后就是ACM中的要求取模,,,,即要求如果结果超过某个值就以某值取模,,,,这种题目只要是+,-,* 就直接对过程进行取模即可,如果在运算过程第一步就可能超过long long ,就必须在运算之前进行取模!!!!,,,基本就是三则运算下的取模--->无脑取,,,运算前取+过程中取+结果取,但有时运算前取会W…
C++中的取模运算符%只能对整数使用(如果要对浮点数使用需要fmod),Python则不同,对整数或浮点数均有效. 在这里再介绍一下取模的定义:假设a,b两个数,那么a mod b = a - n*b,其中n为不大于a/b的最大整数. 举个例子,假设要计算-3.5 mod 2,那么-3.5/2 = -1.75, 所以n = -2.则 -3.5 mod 2 = -3.5 - (-2) * 2 = 0.5…
在java中的  %  实际上是取余. 下面为数学概念上的取余和取模: 对于整型数a,b来说,取模运算或者求余运算的方法都是: 1.求 整数商: c = a/b; 2.计算模或者余数: r = a - c*b. 求余和求模的区别: 取余:在第一步求c的时候,c向负无穷方向舍入(向0取整). 取模:在第一步求c的时候,c向0方向舍入(向下取整). ----------------------------------------------------------------------------…
执行程序段<?php  echo 8%(-2) ?>,输出结果是: %为取模运算,以上程序将输出0 $a%$b,其结果的正负取决于$a的符号. echo ((-8)%3);     //将输出-2 echo (8%(-3));      //将输出2…
昨天在学习Matlab的数学函数时,教程中提到取模(mod)与取余(rem)是不同的,今天在网上具体查了一下: 通常取模运算也叫取余运算,它们返回结果都是余数.rem和mod唯一的区别在于:    当x和y的正负号一样的时候,两个函数结果是等同的:当x和y的符号不同时,rem函数结果的符号和x的一样,而mod和y一样.    这是由于这两个函数的生成机制不同,rem函数采用fix函数,而mod函数采用了floor函数(这两个函数是用来取整的,fix函数向0方向舍入,floor函数向无穷小方向舍入…
组合数学推推推最后,推得要求C(n+m,m)%p 其中n,m小于10^9,p小于1^5 用Lucas定理求(Lucas定理求nm较大时的组合数) 因为p数据较小可以直接阶乘打表求逆元 求逆元时,由费马小定理知道p为素数时,a^p-1=1modp可以写成a*a^p-2=1modp 所以a的逆元就是a^p-2, 可以求组合数C(n,m)%p中除法取模,将其转化为乘法取模 即    n!/(m!*(n-m)!)=n!*(m!*(n-m)!)^p-2 求C(n+m,m). n,m<=1000,二维数组递…
doT.js实现混合布局 数据结构 { "status": "1", "msg": "获取成功", "info": { "id": "47", "user_id": "1250000172", "tmpl_id": "1", "token": "xxfisw1…
引入: 组合数C(m,n)表示在m个不同的元素中取出n个元素(不要求有序),产生的方案数.定义式:C(m,n)=m!/(n!*(m-n)!)(并不会使用LaTex QAQ). 根据题目中对组合数的需要,有不同的计算方法. (1)在模k的意义下求出C(i,j)(1≤j≤i≤n)共n2 (数量级)个组合数: 运用一个数学上的组合恒等式(OI中称之为杨辉三角):C(m,n)=C(m-1,n-1)+C(m-1,n). 证明: 1.直接将组合数化为定义式暴力通分再合并.过程略. 2.运用组合数的含义:设m…
#include<stdio.h> #include<stdlib.h> //快速幂算法,数论二分 long long powermod(int a,int b, int c) //不用longlong就报错,题目中那个取值范围不就在2的31次方内 { long long t; if(b==0) return 1%c; if(b==1) return a%c; t=powermod(a,b/2,c);//递归调用,采用二分递归算法,,注意这里n/2会带来奇偶性问题 t=t*t%c;…
初学java的时候接触的%这个符号 百分号? 求余? 取模? 我只知道不是百分号,好像是求余,听别人那叫求模运算符,跟求余一样,于是我便信了. 思考之后开始迷糊,然后经过多次考证得到以下结论. 首先,%是求余的意思,不是求模的意思.求模不完全等于求余. 首先我们遵守公式: a = b * q + r; 这里的a是被除数,b是除数,q是商,r是余数也可以是模. q= a/b 且 |r| < |b| 于是得到: r = a – (a/b)*b; r的求值公式都是这样,那么求余和求模的区别在哪呢? 1…