shell 求幂】的更多相关文章

$ let i=** $ echo $i $ ((i=**)) $ echo $i $ echo "5^2" | bc…
分别用迭代方法和递归方法实现求幂迭代方法的时间复杂度为O(n),空间复杂度为O(1)递归方法1的时间复杂度为O(logn),空间复杂度为O(logn)递归方法2的时间复杂度为O(n),空间复杂度为O(n)#!/usr/bin/env python #coding -*- utf:8 -*- def pow_1(x, n, choice): if choice==0: return pow_1_iter(x, n, 1) if choice==1: return pow_1_rec(x, n) #…
高精度求幂 public static char[] exponentiation(string a,int r) { ]; string b = ""; string c = a; ; i < r-; i++) { aa = acm.Quadrature(c, a); b = ""; foreach (var item in aa) { b += item; } c = b; } return aa; }…
题目地址:http://ac.jobdu.com/problem.php?pid=1085 题目描述: N<k时,root(N,k) = N,否则,root(N,k) = root(N',k).N'为N的k进制表示的各位数字之和.输入x,y,k,输出root(x^y,k)的值 (这里^为乘方,不是异或),2=<k<=16,0<x,y<2000000000,有一半的测试点里 x^y 会溢出int的范围(>=2000000000) 输入: 每组测试数据包括一行,x(0<…
接触ACM没几天,向各路大神求教,听说ACM主要是研究算法,所以便开始了苦逼的算法学习之路.话不多说,RT所示,学习快速求幂. 在头文件<math.h>或是<cmath>中,double pow( double x, double y );函数是用来快速求x^y,于是便从pow函数来说起,以下大体上是pow的函数代码: int pow(int x, int n) { int num = 1; while (n != 0){ num = num *x; n = n -1; } ret…
做TopCoder SRM 576 D2 L3 题目时,程序有个地方需要对一个数大量求幂并取余,导致程序运行时间很长,看了Editoral之后,发现一个超级高效的求幂并取余的算法,之前做System test时,程序运行时间(最慢的测试用例)为500ms左右,使用此方法之后,运行时间直接减为20ms,快了20多倍,所以将此方法记录下来. 算法时间复杂度为 log(n). 这个算法其实就是  数据结构与算法分析 (Weiss 著) 一书中开头的那个递归求幂算法的非递归版,简洁明了. 代码如下: /…
这道题目是实质上就是高精度的乘法,虽然是带小数点的数多少次幂,但是开始我们需要将它变为整数进行求幂,然后再加上小数点,然后要考虑前导0,有效数位问题,做的时候要十分的小心 #include<iostream> #include<string> #include<cmath> using namespace std; ]; //输入不会超过6位 ]; //计算的结果 ]; int main() { string decim; int ep,i,j,k,numpos,val…
次方求模 时间限制:1000 ms  |  内存限制:65535 KB 难度:3   描述 求a的b次方对c取余的值   输入 第一行输入一个整数n表示测试数据的组数(n<100)每组测试只有一行,其中有三个正整数a,b,c(1=<a,b,c<=1000000000) 输出 输出a的b次方对c取余之后的结果 样例输入 3 2 3 5 3 100 10 11 12345 12345 样例输出 3 1 10481 /* Name: NYOJ--102--次方求模 Copyright: ©20…
Implement pow(x, n), which calculates x raised to the power n (xn). Example 1: Input: 2.00000, 10 Output: 1024.00000 Example 2: Input: 2.10000, 3 Output: 9.26100 Example 3: Input: 2.00000, -2 Output: 0.25000 Explanation: 2-2 = 1/22 = 1/4 = 0.25 题意: 求…
一,两种不同的求幂运算 求解x^n(x 的 n 次方) ①使用递归,代码如下: private static long pow(int x, int n){ if(n == 0) return 1; if(n == 1) return x; if(n % 2 == 0) return pow(x * x, n / 2); else return pow(x * x, n / 2) * x; } 分析: 每次递归,使得问题的规模减半.2到6行操作的复杂度为O(1),第7行pow函数里面的x*x操作…