LCA倍增算法】的更多相关文章

LCA 算法是一个技巧性很强的算法. 十分感谢月老提供的模板. 这里我实现LCA是通过倍增,其实就是二进制优化. 任何一个数都可以有2的阶数实现 例如16可以由1 2 4 8组合得到 5可以由1 2 4 组合得到 便于读者理解 我放一道例题吧 Problem F: 挑战迷宫 Description 小翔和小明正在挑战一个神奇的迷宫.迷宫由n个房间组成,每个房间的编号为1~n,其中1号房间是他们俩初始位置, 所有房间一共由n-1条路连接,使得房间两两之间能够相互达到(构成一棵树),每条路的长度为W…
      树上倍增求LCA LCA指的是最近公共祖先(Least Common Ancestors),如下图所示: 4和5的LCA就是2 那怎么求呢?最粗暴的方法就是先dfs一次,处理出每个点的深度 然后把深度更深的那一个点(4)一个点地一个点地往上跳,直到到某个点(3)和另外那个点(5)的深度一样 然后两个点一起一个点地一个点地往上跳,直到到某个点(就是最近公共祖先)两个点"变"成了一个点 不过有没有发现一个点地一个点地跳很浪费时间? 如果一下子跳到目标点内存又可能不支持,相对来说…
/* *********************************************** Author :kuangbin Created Time :2013-9-5 9:45:17 File Name :F:\2013ACM练习\专题学习\LCA\POJ1330_3.cpp ************************************************ */ #include <stdio.h> #include <string.h> #inclu…
算法笔记 模板: vector<int>g[N]; vector<int>edge[N]; ][N]; int deep[N]; int h[N]; void dfs(int o,int u,int w) { ,h[u]=h[o]+w; ;j<g[u].size();j++) { if(g[u][j]!=o) { anc[][g[u][j]]=u; ;i<;i++)anc[i][g[u][j]]=anc[i-][anc[i-][g[u][j]]]; dfs(u,g[u]…
先上我原来的错误的代码 type node=^link; link=record num:int64; next:node; end; var fa:..,..] of int64; dep:..] of int64; nd:..] of node; b:..] of boolean; dl:..] of int64; n,m,maxdep,ans,t1,t2:int64; i:longint; procedure maketree; var t1,t2,head,tail:int64; i,j…
. #include <cstring> #include <cstdio> #include <cstdlib> #include <algorithm> #include <cmath> #include <vector> using namespace std; +; vector <int> son[N]; ],in[N],a,b; void dfs(int prev,int rt){ depth[rt]=dept…
概述 对于有根树T的两个结点u.v,最近公共祖先LCA(T,u,v)表示一个结点x,满足x是u.v的祖先且x的深度尽可能大. 如图,3和5的最近公共祖先是1,5和2的最近公共祖先是4 在本篇中我们先介绍一下倍增算法 我们需要一个数组de[i]来表示每一个节点i的深度,用另一数组parent[i][j]来表示每一节点j向上走2的i次方是哪个节点 我们首先在初始化中算出每个点的深度和它的上一个点是什么(用parent[0][i]表示) 在此后我们进行倍增的处理:parent[1][j]=parent…
codevs 2370 小机房的树 时间限制: 1 s  空间限制: 256000 KB  题目等级 : 钻石 Diamond 题目描述 Description 小机房有棵焕狗种的树,树上有N个节点,节点标号为0到N-1,有两只虫子名叫飘狗和大吉狗,分居在两个不同的节点上.有一天,他们想爬到一个节点上去搞基,但是作为两只虫子,他们不想花费太多精力.已知从某个节点爬到其父亲节点要花费 c 的能量(从父亲节点爬到此节点也相同),他们想找出一条花费精力最短的路,以使得搞基的时候精力旺盛,他们找到你要你…
引入: 比如说要找树上任意两个点的路上的最大值.如果是一般的做法 会 接近o(n)的搜,从一个点搜到另一个点,但是如果询问多了复杂度就很高了. 然后我们会预处理.预处理是o(n²)的,询问是o(1)的,但是n大了,时间会超,内存也开不下. 这个时候就需要lca了.如果是倍增lca的话.处理是o(nlogn的),询问是o(logn)的,你发现什么东西都log一遍就很简单了... lca: 先说下lca.为什么要用lca,打个比方,如果我们事先知道了一个点往上任何一个点是啥,并且到它的路径上的最大值…
1.输入树中的节点数N,输入树中的N-1条边.最后输入2个点,输出它们的最近公共祖先. 2.裸的最近公共祖先. 3. dfs+ST在线算法: /* LCA(POJ 1330) 在线算法 DFS+ST */ #include<iostream> #include<stdio.h> #include<string.h> using namespace std; ; *MAXN];//rmq数组,就是欧拉序列对应的深度序列 struct ST{ *MAXN]; *MAXN][…