显示图像的SIFT flow描述子】的更多相关文章

close all; % 模拟figure 5 im = zeros(401,401,3); im(:,:,:) = 0; im(2:200, 2:200, 2) = 255; im(202:400, 202:400, 2) = 255; im(2:200, 202:400, :) = 255; im(202:400, 2:200, :) = 255; im=im2double(im); % im = imread('0000.png'); figure;imshow(im); cellsize…
SIFT算法:DoG尺度空间生产  SIFT算法:KeyPoint找寻.定位与优化 SIFT算法:确定特征点方向  SIFT算法:特征描述子 目录: 1.确定描述子采样区域 2.生成描述子 2.1 旋转图像至主方向 2.2 生成特征向量 3.归一化特征向量 附:SIFT开源代码集 1 确定描述子采样区域 SIFI 描述子h(x, y, θ)是对特征点附近邻域内高斯图像梯度统计结果的一种表示,它是一个三维的阵列,但通常将它表示成一个矢量.矢量是通过对三维阵列按一定规律进行排列得到的.特征描述子与特…
以上两篇文章中检测在DOG空间中稳定的特征点,lowe已经提到这些特征点是比Harris角点等特征还要稳定的特征.下一步骤我们要考虑的就是如何去很好地描述这些DOG特征点. 下面好好说说如何来描述这些特征点.许多资料中都提到SIFT是一种局部特征,这是因为在SIFT描述子生成过程中,考虑的是该特征点邻域特征点的分布情况(而没有利用全局信息).本步骤中主要计算过程包括:确定特征点的方向和生成特征描述符. 确定特征点方向 在特征点的确定过程中,特征点的坐标以及尺度被确定下来(坐标很重要,尺度更重要,…
Abstract摘要本文提出了一种从图像中提取特征不变性的方法,该方法可用于在对象或场景的不同视图之间进行可靠的匹配(适用场景和任务).这些特征对图像的尺度和旋转不变性,并且在很大范围的仿射失真.3d视点的变化.噪声的增加和光照的变化中提供了鲁棒的匹配.从某种意义上说,一个单一的特征可以与来自许多图像的特征的大型数据库进行高概率的正确匹配.本文还介绍了一种利用这些特征进行目标识别的方法.识别的过程是使用快速最近邻算法将单个特征与来自已知对象的特征数据库相匹配,然后进行hough变换以识别属于单个…
Binary Robust Independent Elementary Features www.cnblogs.com/ronny 1. BRIEF的基本原理 我们已经知道SIFT特征采用了128维的特征描述子,由于描述子用的浮点数,所以它将会占用512 bytes的空间.类似地,对于SURF特征,常见的是64维的描述子,它也将占用256bytes的空间.如果一幅图像中有1000个特征点(不要惊讶,这是很正常的事),那么SIFT或SURF特征描述子将占用大量的内存空间,对于那些资源紧张的应用…
一.Brief算法 1.基本原理 BRIEF是2010年的一篇名为<BRIEF:Binary Robust Independent Elementary Features>的文章中提出,Brief为特征描述子,对已检测到的特征点进行描述,是一种二进制编码描述子,摒弃了区域灰度直方图描述特征点的传统方法,加快特征描述子建立速度,降低特征匹配时间.因为需要事先得到特征点的位置,可以利用Fast特征点检测算法或Harris角点检测算法或者SIFT.Surf等算法检测特征点的位置,接下来利用特征点邻域…
ORBSLAM2中使用ORB描述子的方法 经典的视觉SLAM系统大体分为两种:其一是基于特征点法的,其二是基于直接法的.那么本文主要就讲特征点法的SLAM. 基于特征点法的视觉SLAM系统典型的有PTAM,ORBSLAM等.本文主要围绕ORBSLAM2的方案来阐述特征点法SLAM,因为ORBSLAM2可以说是特征点法SLAM的巅峰之作.ORBSLAM2采用三个主要线程:跟踪,局部建图和闭环以及一个额外线程:全局BA,该线程只有在闭环时才会触发.值得注意的是,ORBSLAM2中每个模块中都采用OR…
简介 BRIEF是2010年的一篇名为<BRIEF:Binary Robust Independent Elementary Features>的文章中提出,BRIEF是对已检测到的特征点进行描述,它是一种二进制编码的描述子,摈弃了利用区域灰度直方图描述特征点的传统方法,大大的加快了特征描述符建立的速度,同时也极大的降低了特征匹配的时间,是一种非常快速,很有潜力的算法. BRIEF具体算法 由于BRIEF仅仅是特征描述子,所以事先要得到特征点的位置,可以利用FAST特征点检测算法或Harris…
1.直方图 用于计算图片特征,表达, 使得数据具有总结性, 颜色直方图对数据空间进行量化,好比10个bin 2. 聚类 类内对象的相关性高 类间对象的相关性差 常用算法:kmeans, EM算法, meanshift, 谱聚类(密度聚类), 层次聚类 kmeans聚类 选取k个类中心,随机选取 计算每个点跟k个类中心的位置 把数据点分配给距离最近的一个类中心 计算新的类中心-对该类中的所有点取均值 类中心数K的选取 K类平均质心的距离加权平均值, 当k=5时的斜率发生变化,我们可以选取5作为分类…
Surf算法是一把牛刀,我们可以很轻易的从网上或各种Opencv教程里找到Surf的用例,把例程中的代码或贴或敲过来,满心期待的按下F5,当屏幕终于被满屏花花绿绿的小圆点或者N多道连接线条霸占时,内心的民族自豪感油然而生,仿佛屠龙宝刀在手,屁颠屁颠的很开心. 如果对Surf的探究或者使用到此为止,我觉得只是用Surf这把牛刀吓唬了一个小鸡仔,万里长征才刚刚开始第一步,最少有三个问题需要得到解答: 1. 保存特征点信息的keyPoints向量内每个元素包含有哪些内容? 2. 通过comput方法生…
介绍 在机器学习算法的世界里,特征工程是非常重要的.实际上,作为一名数据科学家,这是我最喜欢的方面之一!从现有特征中设计新特征并改进模型的性能,这就是我们进行最多实验的地方. 世界上一些顶级数据科学家依靠特征工程来提高他们在竞赛排行榜得分.我相信你甚至会在结构化数据上使用各种特征工程技术. 我们可以将此技术扩展到非结构化数据(例如图像)吗?对于计算机视觉爱好者来说,这是一个有趣的问题,我们将在本文中解决这个问题.准备好对图像数据进行特征提取形式的特征工程吧! 在本文中,我将向你介绍一种流行的图像…
作者提出一种新的基于局部描述子的行为识别算法.…
ORBSLAM2中ORB特征提取的特点 ORBSLAM2中通过对OpenCV中的ORB特征点提取类进行修改,对图像进行分块提取,而后划分节点,使得每个节点中保存的特征点性能是该节点所有特征点中最好的. 可能按照上面说的方式,大家不太能理解. 这么说吧.将铺满苹果的桌子进行画格子,然后每个格子中就会有不同数量的苹果,在每个格子中选出最好吃的苹果,格子中其他的苹果全部扔掉.(虽然有点可惜,但是大局为重嘛),那么原先摆满苹果的桌子(如图1所示),现在就剩下每个格子一个苹果的桌子,尽管苹果少了很多,但是…
二进制描述子设计原则体现在三个部分: 采样pattern 方向orientation compensation 配对sampling pairs ORB基于BRIEF: BRISK是用于OKVIS的描述子 FREAK的pattern设计基于人眼的视网膜 参考文献: 1. https://gilscvblog.com/category/descriptors/…
BRIEF特征全称:Binary Robust Independent Elementary Features.是一种能够快速计算图像特征描述符的方法,同样能够降低特征匹配的时间. 算法计算步骤如下: 1.首先对一张图像计算其特征点,这里就用matlab自带的harris角点检测了,harris代码细节可以参考这一篇博客. 2.对图像进行高斯滤波,这里选用9*9矩阵,主要是为了去除随机噪点. 3.以特征点为中心,取SxS的邻域窗口.在窗口内随机选取一对(两个)点,比较二者像素的大小,进行如下二进…
ColorDescriptor software v4.0 Created by Koen van de Sande, (c) University of Amsterdam Note: Any commercial use of this software requires a license. For additional information, contact Koen van de Sande) Introduction This document contains the usage…
HOG(Histogram of Oriented Gradients),描述的是图像的局部特征,其命名也暗示了其计算方法,先计算图像中某一区域不同方向上梯度的值,然后累积计算频次,得到直方图,该直方图便可代表该区域了,也即从图像中抽取得到的特征向量,可以作为后续分类器的输入了. 注意,HOG 刻画的是图像的局部特征,对于一副高分辨率图像当然可以直接提取特征,效果并不理想.从信息论的角度说,一幅 640*480 的图像,约有 30 万个像素点,直接对原始图像做 HOG 特征提取的话,按照 360…
fpfh_est.setSearchSurface(data); 如果没有设置SearchSurface,使用input数据集作为查找的表面 // If no search surface has been defined, use the input dataset as the search surface itself if (!surface_) { fake_surface_ = true; surface_ = input_; }…
model定义时,每个field都是一个类属性,一个对象.在生成类时,属性有contribute_to_class的方法,会调用该方法. m2m field,它会先调用自己的contribute_to_class,然后调用父类的contribute_to_class,因为m2m类是继承自relatfield, def contribute_to_class(self, cls, name, virtual_only=False): super(RelatedField, self).contri…
"""Accessors for related objects. When a field defines a relation between two models, each model class providesan attribute to access related instances of the other model class (unless thereverse accessor has been disabled with related_name…
平台:win10 x64 +VS 2015专业版 +opencv-3.x.+CMake+Anaconda3(python3.7.0) Issue说明:Opencv3.0版本已经发布了有一段时间,在这段时间也是不断的进行了更新和修复,最近看了一下3.0新增的一些功能,感觉还是蛮强大的,作为一个一直以Opencv为开发环境的程序员来说是一定要体验一下这个新版本的,特别看到说在tracking领域近年比较好的文章TLD和 KCF都有扩展包了,那更是要尝试一下.尝试用扩展包实现sift/surf算法.…
之前结合不同人的资料理解了sift的原理,这里通过opencv中的代码来加深对sift的实现的理解. 使得能够从原理性理解到源码级的理解.不过该博文还是大量基于<赵春江, opencv2.4.9 源码分析,SIFT http://blog.csdn.net/zhaocj>的. 在opencv3.0中,已经看不到sift.cpp源代码了,在2.4.10中还是有的:opencv\sources\modules\nonfree\src下面.可以看出这是一个非免费代码.使用需要付费的,毕竟sift是哥…
上一篇文章 SURF算法与源码分析.上 中主要分析的是SURF特征点定位的算法原理与相关OpenCV中的源码分析,这篇文章接着上篇文章对已经定位到的SURF特征点进行特征描述.这一步至关重要,这是SURF特征点匹配的基础.总体来说算法思路和SIFT相似,只是每一步都做了不同程度的近似与简化,提高了效率. 1. SURF特征点方向分配 为了保证特征矢量具有旋转不变性,与SIFT特征一样,需要对每个特征点分配一个主方向.为些,我们需要以特征点为中心,以$6s$($s = 1.2 *L /9$为特征点…
TF-IDF RootSift VLAD TF-IDF TF-IDF是一种用于信息检索的常用加权技术,在文本检索中,用以评估词语对于一个文件数据库中的其中一份文件的重要程度.词语的重要性随着它在文件中出现的频率成正比增加,但同时会随着它在文件数据库中出现的频率成反比下降.像'的','我们','地'等这些常用词在所有文章中出现的频率会很高,并不能很好的表征一个文档的内容. 同样的在图像检索中也引入了IF-IDF权重, 词频(Term Frequency,TF) 一个visual word在一个图像…
<SIFT原理与源码分析>系列文章索引:http://www.cnblogs.com/tianyalu/p/5467813.html 由前一篇<方向赋值>,为找到的关键点即SIFT特征点赋了值,包含位置.尺度和方向的信息.接下来的步骤是关键点描述,即用用一组向量将这个关键点描述出来,这个描述子不但包括关键点,也包括关键点周围对其有贡献的像素点.用来作为目标匹配的依据(所以描述子应该有较高的独特性,以保证匹配率),也可使关键点具有更多的不变特性,如光照变化.3D视点变化等. SIFT…
Sift之前的江湖 在Sift横空出世之前,特征点检测与匹配江湖上占据霸主地位的是角点检测家族.先来探究一下角点家族不为人知的恩怨情仇. 角点家族的族长是Moravec在1977年提出的Moravec角点检测算子,它是一种基于灰度方差的角点检测方法,该算子计算图像中某个像素点沿水平.垂直方向上的灰度差异,以确定角点位置,Moravec是第一个角点检测算法,也是角点家族的开山鼻祖. 角点家族的九袋长老是Chris Harris & Mike Stephens在1988年提出的Harris角点检测算…
介绍官网:https://docs.opencv.org/3.0-beta/doc/py_tutorials/py_feature2d/py_sift_intro/py_sift_intro.html 在极值点的精确定位后,还需要为找到的特征点进行方向匹配: 特征点方向分配: 可参考:SIFT算法详解和SIFT算法原理详解 对于在DOG金字塔中检测出的关键点点,采集其所在高斯金字塔图像3σ领域窗口内像素的梯度和方向分布特征.梯度的模值和方向如下: 也就是说我们在高斯差分图中找到了极值点,再回到原…
简介 SIFT(scale invariant feature transform)——尺度不变特征转换,用来检测和描述局部特征,运用范围包括object recognition(目标检测), robotic mapping and navigation(机器人地图感知与导航), image stitching(图像拼接), 3D modeling(3D建模), gesture recognition(手势识别), video tracking(视频追踪), individual identif…
我们已经知道SIFT算法采用128维的特征描述子,由于描述子用的是浮点数,所以它将会占用512字节的空间.类似的SUFR算法,一般采用64维的描述子,它将占用256字节的空间.如果一幅图像中有1000个特征点,那么SIFT或SURF特征描述子将占用大量的内存空间,对于那些资源紧张的应用,尤其是嵌入式的应用,这样的特征描述子显然是不可行的.而且,越占有越大的空间,意味着越长的匹配时间. 但是实际上SIFT或SURF的特征描述子中,并不是所有维都在匹配中有着实质性的作用.我们可以用PCA.LDA等特…
上一节中,我们介绍了Harris角点检测.角点在图像旋转的情况下也可以检测到,但是如果减小(或者增加)图像的大小,可能会丢失图像的某些部分,甚至导致检测到的角点发生改变.这样的损失现象需要一种与图像比例无关的角点检测方法来解决.尺度不变特征变换(Scale-Invariant Feature Transform,SIFT)可以解决这个问题.我们使用一个变换来进行特征变换,并且该变换会对不同的图像尺度输出相同的结果. 到底什么是SIFT算法?通俗一点说,SIFT算法利用DoG(差分高斯)来提取关键…