Part 1:杜教筛进阶在了解了杜教筛基本应用,如$\sum_{i=1}^n\varphi(i)$的求法后,我们看一些杜教筛较难的应用.求$\sum_{i=1}^n\varphi(i)*i$考虑把它与$id$函数狄利克雷卷积后的前缀和.$$\sum_{i=1}^n\sum_{d|i}\varphi(d)*d*\frac id=\sum_{i=1}^ni^2$$枚举$T=\frac id$,原式化为$$\sum_{T=1}^nT\sum_{d=1}^{\lfloor\frac nT\rfloor}…
题目大意 有 \(n\) 个整数 \(a_1,a_2,\ldots,a_n\),每个数的范围是 \([1,m]\).还有 \(k\) 个限制,每个限制 \(x_i,y_i\) 表示 \(a_{x_i}\leq a_{y_i}\). 问有多少种不同的情况,以及所有情况中 \({\sigma_0(\gcd(a_1,a_2,\ldots,a_n))}^3\) 的和. \(n\leq 20,m\leq {10}^{10}\) 题解 记 \(f(x)\) 为当 \(m=x\) 时第一问的答案. 记 \(g…
洲阁筛 给定一个积性函数$F(n)$,求$\sum_{i = 1}^{n}F(n)$.并且$F(n)$满足在素数和素数次幂的时候易于计算. 显然有: $\sum_{i = 1}^{n} F(n) = \sum_{i = 1}^{\sqrt{n}}F(i) \left(\sum_{\sqrt{n} < p\leqslant n/i, p\ is\ a\ prime} F(p) \right) + \sum_{i = 1, i\ has\ no\ prime\ factor\ greater\ th…
问题描述 洲阁筛解决的问题主要是\(n\)范围较大的积性函数前缀和. ​ 已知一积性函数\(f(i)\),求\(\sum_{i=1}^nf(i)\). \(n\leq10^{12}\). 求解方法 如果\(f(i)\)在质数处的取值比较简单,那么可以运用洲阁筛来求解. ​ 我们需要两个辅助数组. \(g_{i,j}\) 定义如下: \[ \begin{aligned} g_{i,j}&=\sum_{k=2}^i[k与p_1,p_2,...,p_j互质或就是其中某个质数]\; s(k)\\ &…
问题描述 快速求素数处点值比较好求的积性函数前缀和 大致过程 Step1.求出一定范围内的素数处点值之和(\(g\)) Step2.利用上面的\(g\)求出一个\(f\)然后用\(f\)求出前缀和 具体过程 (这里约定一下,在下面的内容中用\(p\)表示一个素数,用\(P_i\)表示素数列表中的第\(i\)项) 这里以求\(\sum \phi(i)\)为例 首先对于素数\(p\)来说,\(\phi(p)=p-1\)的,因此我们可以快速求出素数处点值的和\(\sum \phi(p)=\sum p…
好像在某些情况下杜教筛会遇到瓶颈,先看着.暑假学一些和队友交错的知识的同时开这个大坑.…
首先要求每个数互不相等,故有$x\perp y$. 可以发现$\frac{x}{y}$在$k$进制下为纯循环小数的充要条件为$x\cdot k^{len}\equiv x(mod\ y)$,即$y\perp k$. 接下来进行经典的推导:$$\begin{aligned}&\sum\limits_{i=1}^{n}\sum\limits_{j=1}^{m}[i\perp j][j\perp k]\\=&\sum\limits_{i=1}^{n}\sum\limits_{j=1}^{m}\s…
https://www.lydsy.com/JudgeOnline/problem.php?id=4805 给出一个数字N,求sigma(phi(i)),1<=i<=N https://blog.csdn.net/popoqqq/article/details/45023331 ←杜教筛的一些讲解 杜教筛用来求积性函数前缀和,本题同bzoj 3944,bzoj 3944多了一个求sigma( μ ( i ) ) #include<iostream> #include<cstd…
首先感谢又强又嘴又可爱脸还筋道的国家集训队(Upd: WC2019 进候选队,CTS2019 不幸 rk6 退队)神仙瓜 ( jumpmelon ) 给我讲解这三种筛法~~ 由于博主的鸽子属性,这篇博客可能会无限期咕咕咕 线性筛 这种算法是比较基础的筛法,在入门时就已经学习用它来筛一定范围内的质数了,因此具体算法流程无需赘述.但在筛质数的基础上,这种算法由于其优越性质在处理数论函数时也被广泛应用.这里直接给出筛出小于 \(N\) 的质数的模板. void init() { for (int i…
本文内容概要: \(A=\sum\limits_{i=1}^n\dfrac1{\sqrt i}=1+\dfrac1{\sqrt2}+\cdots+\dfrac1{\sqrt n}\) \(O(\sqrt n)\) ,将给出一种只需使用初中数学知识的放缩 \(B=\sum\limits_{i=1}^n\sqrt i=1+\sqrt2+\cdots+\sqrt n\) \(O(n\sqrt n)\) ,使用积分进行放缩 \(C=\sum\limits_{i=1}^n\dfrac1i=1+\dfrac…