Python----简单线性回归】的更多相关文章

1.问题引入  在统计学中,线性回归是利用称为线性回归方程的最小二乘函数对一个或多个自变量和因变量之间关系进行建模的一种回归分析.这种函数是一个或多个称为回归系数的模型参数的线性组合.一个带有一个自变量的线性回归方程代表一条直线.我们需要对线性回归结果进行统计分析. 例如,假设我们已知一些学生年纪和游戏时间的数据,可以建立一个回归方程,输入一个新的年纪时,预测该学生的游戏时间.自变量为学生年纪,因变量为游戏时间.当只有一个因变量时,我们称该类问题为简单线性回归.当游戏时间与学生年纪和学生性别有关…
回归最初是遗传学中的一个名词,是由英国生物学家兼统计学家高尔顿首先提出来的,他在研究人类身高的时候发现:高个子回归人类的平均身高,而矮个子则从另一方向回归人类的平均身高: 回归分析整体逻辑 回归分析(Regression Analysis) 研究自变量与因变量之间关系形式的分析方法,它主要是通过建立因变量y与影响它的自变量 x_i(i=1,2,3- -)之间的回归模型,来预测因变量y的发展趋向. 回归分析的分类 线性回归分析 简单线性回归 多重线性回归 非线性回归分析 逻辑回归 神经网络 回归分…
文章简介 使用python简单实现机器学习中单元线性回归算法. 算法目的 该算法核心目的是为了求出假设函数h中多个theta的值,使得代入数据集合中的每个x,求得的h(x)与每个数据集合中的y的差值的和最小.简单来说就是需要生成一个函数,它尽可能贴近实际数据中的每个值,方便我们预测. 核心算法 假设函数 即需要求的函数,为了简单在此只设置一个x对应一个y,求theta0和theta1 代价函数 目的是J最小,也就是每个y到达函数的距离之和最小. 批量梯度下降函数 带假设函数和代价函数带入到下降函…
grad_desc .caret, .dropup > .btn > .caret { border-top-color: #000 !important; } .label { border: 1px solid #000; } .table { border-collapse: collapse !important; } .table td, .table th { background-color: #fff !important; } .table-bordered th, .tab…
  简单线性回归(最小二乘法)¶   0.引入依赖¶ In [7]: import numpy as np import matplotlib.pyplot as plt   1.导入数据¶ In [15]: points = np.genfromtxt("data.csv",delimiter=",") #points #提取points中的两列数据,分别作为x,y x=points[:,0]; y=points[:,1]; #用plt画出散点图 plt.scat…
(一)认识回归 回归是统计学中最有力的工具之中的一个. 机器学习监督学习算法分为分类算法和回归算法两种,事实上就是依据类别标签分布类型为离散型.连续性而定义的. 顾名思义.分类算法用于离散型分布预測,如前面讲过的KNN.决策树.朴素贝叶斯.adaboost.SVM.Logistic回归都是分类算法.回归算法用于连续型分布预測.针对的是数值型的样本,使用回归.能够在给定输入的时候预測出一个数值.这是对分类方法的提升,由于这样能够预測连续型数据而不不过离散的类别标签. 回归的目的就是建立一个回归方程…
前文再续书接上一回,机器学习的主要目的,是根据特征进行预测.预测到的信息,叫标签. 从特征映射出标签的诸多算法中,有一个简单的算法,叫简单线性回归.本文介绍简单线性回归的概念. (1)什么是简单线性回归 "回归(regression)"是什么?如之前所讲,预测模型可区分为"分类器"跟"回归器",回归器,就是用来预测趋势变化的,比如预测明天哪支股会涨停,预测某天的降雨量是多少,预测未来一年房价的变化,等等.所以回归就是预测的意思,没有什么高深的.线…
写在开头 由于某些原因开始了机器学习,为了更好的理解和深入的思考(记录)所以开始写博客. 学习教程来源于github的Avik-Jain的100-Days-Of-MLCode 英文版:https://github.com/Avik-Jain/100-Days-Of-ML-Code 中文翻译版:https://github.com/MLEveryday/100-Days-Of-ML-Code 本人新手一枚,所以学习的时候遇到不懂的会经常百度,查看别人的博客现有的资料.但是由于不同的人思维和写作风格…
我们继续研究BeautifulSoup分类打印输出 Python简单爬虫入门一 Python简单爬虫入门二 前两部主要讲述我们如何用BeautifulSoup怎去抓取网页信息以及获取相应的图片标题等信息, 等于我们已经只知道如何用工具去浏览和检索内容,但是实现只有你知道抓取的是什么,这时候 我们需要整理分类,给他们命名以及分类这样打印出来别人一看就知道标题是什么,内容是什么 #!usr/bin/env python # -*- coding:utf-8 -*- from bs4 import B…
接着上一次爬虫我们继续研究BeautifulSoup Python简单爬虫入门一 上一次我们爬虫我们已经成功的爬下了网页的源代码,那么这一次我们将继续来写怎么抓去具体想要的元素 首先回顾以下我们BeautifulSoup的基本结构如下 #!/usr/bin/env python # -*-coding:utf-8 -*- from bs4 import BeautifulSoup import requests headers = { 'User-Agent':'Mozilla/5.0 (Win…