Spark之MapReduce原理】的更多相关文章

参考http://www.cnblogs.com/wuyudong/p/mapreduce-principle.html MapReduce   我们来拆开看: Mapping(映射)对集合里的每个目标应用同一个操作. Reducing(化简)遍历集合中的元素来返回一个综合的结果. 主体思路是通过分散计算来分析大量数据. 1.大数据的并行化计算: 并行计算需要考虑如何划分计算任务或者计算数据以便对划分的子任务或数据块同时进行计算.但是,前后数据之间存在很强的依赖关系,只能串行计算. 一个大数据如…
spark 生态及运行原理 Spark 特点 运行速度快 => Spark拥有DAG执行引擎,支持在内存中对数据进行迭代计算.官方提供的数据表明,如果数据由磁盘读取,速度是Hadoop MapReduce的10倍以上,如果数据从内存中读取,速度可以高达100多倍. 适用场景广泛 => 大数据分析统计,实时数据处理,图计算及机器学习 易用性 => 编写简单,支持80种以上的高级算子,支持多种语言,数据源丰富,可部署在多种集群中 容错性高.Spark引进了弹性分布式数据集RDD (Resil…
收录待用,修改转载已取得腾讯云授权 作者 | 蒋专 蒋专,现CDG事业群社交与效果广告部微信广告中心业务逻辑组员工,负责广告系统后台开发,2012年上海同济大学软件学院本科毕业,曾在百度凤巢工作三年,2016年入职微信广告中心. 导语 spark 已经成为广告.报表以及推荐系统等大数据计算场景中首选系统,因效率高,易用以及通用性越来越得到大家的青睐,我自己最近半年在接触spark以及spark streaming之后,对spark技术的使用有一些自己的经验积累以及心得体会,在此分享给大家. 本文…
MapReduce MapReduce原理非常重要,hive与spark都是基于MR原理 MapReduce采用多进程,方便对每个任务资源控制和调配,但是进程消耗更多的启动时间,因此MR时效性不高.适合批量,高吞吐的数据处理.Spark采用的是多线程模型. MapReduce执行流程 Map过程 map函数开始产生输出时,并不是直接将数据写到磁盘,它利用缓冲的方式写到内存.每个map任务都有一个环形内存缓冲区用于存储任务输出.在默认情况下,缓冲区大小为100MB.一旦缓冲内容达到阈值(默认80%…
一.工作原理剖析 1.图解 二.性能优化 1.设置Shuffle过程中的并行度:spark.sql.shuffle.partitions(SQLContext.setConf()) 2.在Hive数据仓库建设过程中,合理设置数据类型,比如能设置为INT的,就不要设置为BIGINT.减少数据类型导致的不必要的内存开销. 3.编写SQL时,尽量给出明确的列名,比如select name from students.不要写select *的方式. 4.并行处理查询结果:对于Spark SQL查询的结果…
摘要:相比MapReduce僵化的Map与Reduce分阶段计算相比,Spark的计算框架更加富有弹性和灵活性,运行性能更佳. 本文分享自华为云社区<Spark架构原理>,作者:JavaEdge. 相比MapReduce僵化的Map与Reduce分阶段计算相比,Spark的计算框架更加富有弹性和灵活性,运行性能更佳. Spark的计算阶段 MapReduce一个应用一次只运行一个map和一个reduce Spark可根据应用的复杂度,分割成更多的计算阶段(stage),组成一个有向无环图DAG…
大数据实战(上) # MapReduce原理介绍 大纲: * Mapreduce介绍 * MapReduce2运行原理 * shuffle及排序    定义 * Mapreduce 最早是由google公司研究提出的一种免息nag大规模数据处理的并行计算模型和方法.是hadoop面向大数据并行处理的计算模型.框架和平台 * Mapreduce是一个计算框架,既然是做计算的框架,那么表现形式就是有个输入(input),mapreduce操作这个输入(input),通过本身定义好的计算模型,得到一个…
大数据运算模型 MapReduce 原理 2016-01-24 杜亦舒 MapReduce 是一个大数据集合的并行运算模型,由google提出,现在流行的hadoop中也使用了MapReduce作为计算模型 MapReduce 通俗解释 图书馆要清点图书数量,有10个书架,管理员为了加快统计速度,找来了10个同学,每个同学负责统计一个书架的图书数量张同学 统计 书架1王同学 统计 书架2刘同学 统计 书架3......过了一会儿,10个同学陆续到管理员这汇报自己的统计数字,管理员把各个数字加起来…
原文:http://www.infotech.ac.cn/article/2012/1003-3513-28-2-60.html MapReduce原理及其主要实现平台分析 亢丽芸, 王效岳, 白如江 摘要 关键词: MapReduce; 实现平台; Hadoop; Phoenix; Disco; Mars Analysis of MapReduce Principle and Its Main Implementation Platforms Kang Liyun, Wang Xiaoyue,…
Hapoop原理 Hadoop是一个开源的可运行于大规模集群上的分布式并行编程框架,其最核心的设计包括:MapReduce和HDFS.基于 Hadoop,你可以轻松地编写可处理海量数据的分布式并行程序,并将其运行于由成百上千个结点组成的大规模计算机集群上. 基于MapReduce计算模型编写分布式并行程序相对简单,程序员的主要工作就是设计实现Map和Reduce类,其它的并行编程中的种种复杂问题,如分布式存储,工作调度,负载平衡,容错处理,网络通信等,均由 MapReduce框架和HDFS文件系…