首页
Python
Java
IOS
Andorid
NodeJS
JavaScript
HTML5
【
bzoj 3994 [SDOI2015]约数个数和——反演
】的更多相关文章
bzoj 3994 [SDOI2015]约数个数和——反演
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=3994 \( d(i*j)=\sum\limits_{x|i}\sum\limits_{y|j}e(gcd(\frac{i}{x},y)==1) \) 即把 i*j 的约数质因数分解后,把质因数尽量放在 x 那里,以防重复. \( ans = \sum\limits_{i=1}^{n}\sum\limits_{j=1}^{m}\sum\limits_{x|i}\sum\limits_{y|j…
BZOJ 3994: [SDOI2015]约数个数和
3994: [SDOI2015]约数个数和 Time Limit: 20 Sec Memory Limit: 128 MBSubmit: 898 Solved: 619[Submit][Status][Discuss] Description 设d(x)为x的约数个数,给定N.M,求 Input 输入文件包含多组测试数据. 第一行,一个整数T,表示测试数据的组数. 接下来的T行,每行两个整数N.M. Output T行,每行一个整数,表示你所求的答案. Sample Inp…
BZOJ 3994: [SDOI2015]约数个数和 [莫比乌斯反演 转化]
2015 题意:\(d(i)\)为i的约数个数,求\(\sum\limits_{i=1}^n \sum\limits_{j=1}^m d(ij)\) \(ij\)都爆int了.... 一开始想容斥一下用\(d(i)\)和\(d(j)\)算\(d(ij)\),发现不行... 然后翻题解看到了一步好神的转化: \[ d(nm) = \sum_{i\mid n} \sum_{j\mid m} [gcd(i,j)=1] \] 晚上再补吧还是没拿草稿纸... 补: \(Proof.\) 首先注意约数个数…
【刷题】BZOJ 3994 [SDOI2015]约数个数和
Description 设d(x)为x的约数个数,给定N.M,求 Input 输入文件包含多组测试数据. 第一行,一个整数T,表示测试数据的组数. 接下来的T行,每行两个整数N.M. Output T行,每行一个整数,表示你所求的答案. Sample Input 2 7 4 5 6 Sample Output 110 121 HINT 1<=N, M<=50000 1<=T<=50000 Solution 莫比乌斯反演 但这题更多的是套路 首先,一个神奇的东东:\(d(nm)= \…
BZOJ 3994: [SDOI2015]约数个数和3994: [SDOI2015]约数个数和 莫比乌斯反演
https://www.lydsy.com/JudgeOnline/problem.php?id=3994 https://blog.csdn.net/qq_36808030/article/details/77056706 莫比乌斯反演,我现在莫比乌斯反演都不会写不会推了. #include<iostream> #include<cstdio> #include<cstring> #include<algorithm> #include<cmath&…
BZOJ.3994.[SDOI2015]约数个数和(莫比乌斯反演)
题目链接 \(Description\) 求\[\sum_{i=1}^n\sum_{j=1}^md(ij)\] \(Solution\) 有结论:\[d(nm)=\sum_{i|d}\sum_{j|d}[\gcd(i,j)=1]\] 证明可以对质因子单独考虑吧,不想写了,背过就好了.见这:https://blog.csdn.net/PoPoQQQ/article/details/45078079. \[\begin{aligned}\sum_{i=1}^n\sum_{j=1}^md(ij)&=\…
●BZOJ 3994 [SDOI2015]约数个数和
题链: http://www.lydsy.com/JudgeOnline/problem.php?id=3994 题解: 莫比乌斯反演 (先定义这样一个符号[x],如果x为true,则[x]=1,否则[x]=0) 首先有这么一个结论: 令d(x)表示x的约数的个数,那么 $d(nm)=\sum_{i|n}\sum_{j|m}[gcd(i,j)==1]$ 证明: 设$n=p1^{x1}p2^{x2}p3^{x3}\cdots pk^{xk},m=p1^{y1}p2^{y2}p3^{y3}\cdot…
【BZOJ 3994】3994: [SDOI2015]约数个数和(莫比乌斯反演)
3994: [SDOI2015]约数个数和 Description 设d(x)为x的约数个数,给定N.M,求 Input 输入文件包含多组测试数据. 第一行,一个整数T,表示测试数据的组数. 接下来的T行,每行两个整数N.M. Output T行,每行一个整数,表示你所求的答案. Sample Input 2 7 4 5 6 Sample Output 110 121 HINT 1<=N, M<=50000 1<=T<=50000 Source Round 1 感谢yts19…
[BZOI 3994] [SDOI2015]约数个数和(莫比乌斯反演+数论分块)
[BZOI 3994] [SDOI2015]约数个数和 题面 设d(x)为x的约数个数,给定N.M,求\(\sum _{i=1}^n \sum_{i=1}^m d(i \times j)\) T组询问,\(N,M,T \leq 50000\) 分析 首先有一个结论 \[d(nm)= \sum _{i |n} \sum _{j|m} [gcd(i,j)=1]\] 这是因为nm的约数都可以表示为\(i \times \frac{m}{j}\)的形式,并且为了不重复算,要保证\(gcd(i,j)=1\…
【BZOJ】3994: [SDOI2015]约数个数和
题意: \(T(1 \le T \le 50000)\)次询问,每次给出\(n, m(1 \le n, m \le 50000)\),求\(\sum_{i=1}^{n} \sum_{j=1}^{m} d(ij)\),其中\(d(n)\)表示\(n\)的约数个数 分析 有个结论: $$\sum_{x_1}^{y_1} \sum_{x_2}^{y_2} \cdots \sum_{x_k}^{y_k} d(x_1 x_2 \cdots x_k) = \sum_{x_1}^{y_1} \sum_{x_2…