51nod-1103-抽屉原理】的更多相关文章

1103 N的倍数 题目来源: Ural 1302 基准时间限制:1 秒 空间限制:131072 KB 分值: 40 难度:4级算法题 一个长度为N的数组A,从A中选出若干个数,使得这些数的和是N的倍数. 例如:N = 8,数组A包括:2 5 6 3 18 7 11 19,可以选2 6,因为2 + 6 = 8,是8的倍数.   Input 第1行:1个数N,N为数组的长度,同时也是要求的倍数.(2 <= N <= 50000) 第2 - N + 1行:数组A的元素.(0 < A[i] &…
1103 N的倍数 题目来源: Ural 1302 基准时间限制:1 秒 空间限制:131072 KB 分值: 40 难度:4级算法题  收藏  关注 一个长度为N的数组A,从A中选出若干个数,使得这些数的和是N的倍数. 例如:N = 8,数组A包括:2 5 6 3 18 7 11 19,可以选2 6,因为2 + 6 = 8,是8的倍数. Input 第1行:1个数N,N为数组的长度,同时也是要求的倍数.(2 <= N <= 50000) 第2 - N + 1行:数组A的元素.(0 < …
题目链接:https://www.51nod.com/onlineJudge/questionCode.html#!problemId=1103 题意:中文题诶- 思路:抽屉原理 对于两个数a, b, 若a=b(modx),那么(a-b)%x=0: 所以求满足题意的数列,我们可以在连续子序列里面找到. 证明:我们用num[i]存储a[i]的前缀和mod n的值,我们有n个前缀和,其mod n的值有1~n-1 n-1种可能(如果为0的话说明第1个元素到第i个元素的和是n的倍数啦),由抽屉原理可知,…
Factory One industrial factory is reforming working plan. The director suggested to set a mythical detail production norm. If at the beginning of the day there were x details in the factory storage, then by the end of the day the factory has to produ…
题意: 给出两个数n,m,0<=n,m<=3000,输出n/m的循环小数表示以及循环节长度. 思路: 设立一个r[]数组记录循环小数,u[]记录每次的count,用于标记,小数计算可用 r[i]=n*10/m;n=n*10%10 直到n为0或u[n]!=0(找到循环节) 涉及到两个知识点:n/m的余数在0~m-1之间: 抽屉原理:循环次数最多不超过m+1次 具体见代码. //求循环节 #include<cstdio> #include<cstring> #define…
http://acm.hdu.edu.cn/showproblem.php?pid=3303 Harmony Forever Time Limit: 20000/10000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) Total Submission(s): 813    Accepted Submission(s): 222 Problem Description We believe that every inh…
抽屉原理可以说是组合数学中最简单易懂的一个原理了,其最简单最原始的一个表达形式:对于n本书放到n-1个抽屉中,保证每个抽屉都要有书,则必存在一个抽屉中有2本书.但是这个简单的原理在很多问题中都能够巧妙的应用到,融合将问题一步步抽象转化来接近抽屉原理的原始模型,是用好抽屉原理的关键. 问题一:两个半径相等的圆盘上各有一个内接正2n边形,每个正2n边形的顶点有一半染上黄色,一般染上蓝色,将这一个圆盘放在另一个圆盘上并使得两个正2n边形的顶点均重合,这样得到2n对顶点,如果一对顶点中两个重合的顶点颜色…
/* 引用过来的 题意: 给出N个数,问其中是否存在M个数使其满足M个数的和是N的倍数,如果有多组解, 随意输出一组即可.若不存在,输出 0. 题解: 首先必须声明的一点是本题是一定是有解的.原理根据抽屉原理: 因为有n个数,对n个数取余,如果余数中没有出现0,根据鸽巢原理,一定有两个数的余数相同, 如果余数出现0,自然就是n的倍数.也就是说,n个数中一定存在一些数的和是n的倍数. 本题的思路是从第一个数开始一次求得前 i(i <= N)项的和关于N的余数sum,并依次记录相应余数的存在状态,…
Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 6452   Accepted: 2809   Special Judge Description The input contains N natural (i.e. positive integer) numbers ( N <= 10000 ). Each of that numbers is not greater than 15000. This numbers a…
传送门 首先,选取子集的限制太宽了,子集似乎只能枚举,不是很好做.考虑加强限制条件:将"选取子集"的限制变为"选取子序列"的限制.在接下来的讨论中我们将会知道:将限制控制得更紧,问题也一定会有解. 现在我们需要求\(A,B\)的两个子序列,满足两者的和相等.显然可以前缀和,然后就不会做了qwq 考虑下面的算法:假定\(\sum\limits_{a \in A} a < \sum\limits_{b \in B} b\)(如果相等直接全选),设序列\(A\)前缀…