dropout 为何会有正则化作用】的更多相关文章

在神经网络中经常会用到dropout,大多对于其解释就是dropout可以起到正则化的作用. 一下是我总结的对于dropout的理解.花书上的解释主要还是从模型融合的角度来解释,末尾那一段从生物学角度的解释是在是看不明白. 从模型融合的角度来解释dropout: Dropout提供了正则化一一大类模型的方法.Dropout可以被认为是集成大量的深层神经网络模型的 Bagging方法.通常的Bagging方法是每个模型单独训练的,但是这对于大规模的神经网络来说是不现实的.一般神经网络模型的融合都只…
Deep Learning 方向的部分 Paper ,自用.一 RNN 1 Recurrent neural network based language model RNN用在语言模型上的开山之作 2 Statistical Language Models Based on Neural Networks Mikolov的博士论文,主要将他在RNN用在语言模型上的工作进行串联 3 Extensions of Recurrent Neural Network Language Model 开山之…
转载 http://hi.baidu.com/chb_seaok/item/6307c0d0363170e73cc2cb65 个人阅读的Deep Learning方向的paper整理,分了几部分吧,但有些部分是有交叉或者内容重叠,也不必纠结于这属于DNN还是CNN之类,个人只是大致分了个类.目前只整理了部分,剩余部分还会持续更新. 一 RNN 1 Recurrent neural network based language model RNN用在语言模型上的开山之作 2 Statistical…
正则化方法:防止过拟合,提高泛化能力 在训练数据不够多时,或者overtraining时,常常会导致overfitting(过拟合).其直观的表现如下图所示,随着训练过程的进行,模型复杂度增加,在training data上的error渐渐减小,但是在验证集上的error却反而渐渐增大——因为训练出来的网络过拟合了训练集,对训练集外的数据却不work. 为了防止overfitting,可以用的方法有很多,下文就将以此展开.有一个概念需要先说明,在机器学习算法中,我们常常将原始数据集分为三部分:t…
正则化方法:防止过拟合,提高泛化能力 在训练数据不够多时,或者overtraining时,常常会导致overfitting(过拟合).其直观的表现如下图所示,随着训练过程的进行,模型复杂度增加,在training data上的error渐渐减小,但是在验证集上的error却反而渐渐增大——因为训练出来的网络过拟合了训练集,对训练集外的数据却不work. 为了防止overfitting,可以用的方法有很多,下文就将以此展开.有一个概念需要先说明,在机器学习算法中,我们常常将原始数据集分为三部分:t…
ps:转的.当时主要是看到一个问题是L1 L2之间有何区别,当时对l1与l2的概念有些忘了,就百度了一下.看完这篇文章,看到那个对W减小,网络结构变得不那么复杂的解释之后,满脑子的6666-------->把网络权重W看做为对上一层神经元的一个WX+B的线性函数模拟一个曲线就好.知乎大神真的多. 版权声明:本文为博主原创文章,未经博主允许不得转载.   目录(?)[+]   本文是<Neural networks and deep learning>概览 中第三章的一部分,讲机器学习/深…
正则化 在模型中加入正则项,防止训练过拟合,使测试集效果提升 Dropout 每次在网络中正向传播时,在每一层随机将一些神经元置零(相当于激活函数置零),一般在全连接层使用,在卷积层一般随机将整个通道置零而不是单个神经元 Dropout 的两种解释: 1.dropout避免了特征之间的相互适应,假如让网络识别一只猫,一个神经元学到了耳朵,一个学到了尾巴,另一个学到了毛,将这些特征组合在一起来判断是否是猫:Dropout以后模型不能通过这些特征组合来判断,需要通过不同的零散的特征来判断,某种程度上…
1. 什么是Dropout(随机失活) 就是在神经网络的Dropout层,为每个神经元结点设置一个随机消除的概率,对于保留下来的神经元,我们得到一个节点较少,规模较小的网络进行训练. 标准网络和dropout网络: 左边是简单的模型,右边是含有dropout的模型 l: hidden layer index (隐藏层索引) z: denote the vector of inputs into layer l(表示l层的向量输入) y: output of each layer(每一层的输出)…
other_techniques_for_regularization 随手翻译,略作参考,禁止转载 www.cnblogs.com/santian/p/5457412.html Dropout: Dropout is a radically different technique for regularization. Unlike L1 and L2 regularization, dropout doesn't rely on modifying the cost function. In…
觉得有用的话,欢迎一起讨论相互学习~Follow Me 1.4 正则化(regularization) 如果你的神经网络出现了过拟合(训练集与验证集得到的结果方差较大),最先想到的方法就是正则化(regularization).另一个解决高方差的方法就是准备更多的数据,这也是非常可靠的方法. 正则化的原理 正则化公式简析 L1范数:向量各个元素绝对值之和 L2范数:向量各个元素的平方求和然后求平方根 Lp范数:向量各个元素绝对值的p次方求和然后求1/p次方 L∞范数:向量各个元素求绝对值,最大那…