概念梳理 GBDT的别称 GBDT(Gradient Boost Decision Tree),梯度提升决策树.     GBDT这个算法还有一些其他的名字,比如说MART(Multiple Additive Regression Tree),GBRT(Gradient Boost Regression Tree),Tree Net等,其实它们都是一个东西(参考自wikipedia – Gradient Boosting),发明者是Friedman. 研究GBDT一定要看看Friedman的pa…
集成学习总结 简单易学的机器学习算法——梯度提升决策树GBDT GBDT(Gradient Boosting Decision Tree) Boosted Tree:一篇很有见识的文章 https://www.zhihu.com/question/54332085 AdaBoost与GBDT的区别 通俗来说不是很好说,我这里简单说说两者的相同点和不同点.相同点:模型都是加法模型.学习算法都是前向分布算法:每一步都需要训练一个弱分类器来弥补上一轮弱分类器的不足.不同点:Adaboost是新的弱学习…
概述 GBDT(Gradient Boosting Decision Tree) 又叫 MART(Multiple Additive Regression Tree),是一种迭代的决策树算法,该算法由多棵决策树组成,所有树的结论累加起来做最终答案.它在被提出之初就和SVM一起被认为是泛化能力较强的算法.GBDT中的树是回归树(不是分类树),GBDT用来做回归预测,调整后也可以用于分类. 集成学习==>提升方法族==>梯度提升方法==>以决策树作为基学习器的梯度提升方法 集成学习 集成学习…
概述 线性回归拟合一个因变量与一个自变量之间的线性关系y=f(x).       Spark中实现了:       (1)普通最小二乘法       (2)岭回归(L2正规化)       (3)Lasso(L1正规化).       (4)局部加权线性回归       (5)流式数据可以适用于线上的回归模型,每当有新数据达到时,更新模型的参数,MLlib目前使用普通的最小二乘支持流线性回归.除了每批数据到达时,模型更新最新的数据外,实际上与线下的执行是类似的. 本文采用的符号: 拟合函数   …
在Spark2.0版本中(不是基于RDD API的MLlib),共有四种聚类方法:             (1)K-means             (2)Latent Dirichlet allocation (LDA)             (3)Bisecting k-means(二分k均值算法)             (4)Gaussian Mixture Model (GMM).             基于RDD API的MLLib中,共有六种聚类方法:          …
在Spark2.0版本中(不是基于RDD API的MLlib),共有四种聚类方法:      (1)K-means      (2)Latent Dirichlet allocation (LDA)      (3)Bisecting k-means(二分k均值算法)      (4)Gaussian Mixture Model (GMM).        基于RDD API的MLLib中,共有六种聚类方法:      (1)K-means      (2)Gaussian mixture  …
在Spark2.0版本中(不是基于RDD API的MLlib),共有四种聚类方法:      (1)K-means      (2)Latent Dirichlet allocation (LDA)      (3)Bisecting k-means(二分k均值算法)      (4)Gaussian Mixture Model (GMM).        基于RDD API的MLLib中,共有六种聚类方法:      (1)K-means      (2)Gaussian mixture  …
Spark2.0 MLPC(多层神经网络分类器)算法概述 MultilayerPerceptronClassifier(MLPC)这是一个基于前馈神经网络的分类器,它是一种在输入层与输出层之间含有一层或多层隐含结点的具有正向传播机制的神经网络模型.  中间的节点使用sigmoid (logistic)函数,输出层的节点使用softmax函数.输出层的节点的数目表示分类器有几类.MLPC学习过程中使用BP算法,优化问题抽象成logistic loss function并使用L-BFGS进行优化.…
参数设置 α: 梯度上升算法迭代时候权重更新公式中包含 α :  http://blog.csdn.net/lu597203933/article/details/38468303 为了更好理解 α和最大迭代次数的作用,给出Python版的函数计算过程. # 梯度上升算法-计算回归系数 # 每个回归系数初始化为1 # 重复R次: # 计算整个数据集的梯度 # 使用α*梯度更新回归系数的向量 # 返回回归系数 def gradAscent(dataMatIn, classLabels,alpha=…
在Spark2.0版本中(不是基于RDD API的MLlib),共有四种聚类方法:      (1)K-means      (2)Latent Dirichlet allocation (LDA)      (3)Bisecting k-means(二分k均值算法)      (4)Gaussian Mixture Model (GMM)       基于RDD API的MLLib中,共有六种聚类方法:      (1)K-means      (2)Gaussian mixture     …