文章已同步更新在https://ldzhangyx.github.io/,欢迎访问评论.   五个月没写博客了,不熟悉我的人大概以为我挂了…… 总之呢这段时间还是成长了很多,在加拿大实习的两个多月来,我在编码能力和眼界上都有了极大长进.当然,我也点上了烹饪技能点. 废话不多说,我们来看一篇论文,就是标题所说的使用模态注意力和图像过滤机制的多模态句子摘要. ==================== 个人见解 宗成庆老师的这篇文章发表于ACL'18,同时获得了国家自然科学基金的支持.文章着眼于利用…
流程: 1.文本和摘要全部输入到模型中. 2.训练时,对生成摘要取前C个词,从头开始取,如果生成的摘要不足C,那么不足的地方直接补<s>. 3.训练时,最大化生成的摘要与原摘要的概率,即每个生成的词与原摘要的词进行对比,用损失函数计算梯度,然后下降. 4.预测时,已经具有了权重的模型,会逐词生成N个词的摘要. 5.注意力:已生成的摘要的前C个词,求出一个注意力权重,然后再成乘以全部文本经过平滑以后的. 6.这里生成词,不是只生成一个,而是生成K个集合.,采用beam search算法来寻找目标…
整体流程与第一篇差不多,只是在encoder和decoder加入了RNN Encoder: 1. ai=xi+li ai=词向量+词在序列中的位置信息(相当于一个权重,[M, 1]) 流程: 先是CNN获取位置信息,然后再加上词向量,然后再通过LSTM 2. 常见的求注意力权重的方法 a. ht-1:RNN输出 流程: 通过LSTM进行编码,然后再求attention 3. 注意力累加 Decoder: 流程: 经过LSTM进行解码,然后再乘以个[cell_output_size, vocab_…
A Structured Self-Attentive Sentence Embedding ICLR 2017 2018-08-19 14:07:29 Paper:https://arxiv.org/pdf/1703.03130.pdf Code(PyTorch): https://github.com/kaushalshetty/Structured-Self-Attention Video Tutorial (Youtube): Ivan Bilan: Understanding and…
Deep Attention Recurrent Q-Network 5vision groups  摘要:本文将 DQN 引入了 Attention 机制,使得学习更具有方向性和指导性.(前段时间做一个工作打算就这么干,谁想到,这么快就被这几个孩子给实现了,自愧不如啊( ⊙ o ⊙ ))   引言:我们知道 DQN 是将连续 4帧的视频信息输入到 CNN 当中,那么,这么做虽然取得了不错的效果,但是,仍然只是能记住这 4 帧的信息,之前的就会遗忘.所以就有研究者提出了 Deep Recurre…
 Multiple Object Recognition With Visual Attention Google DeepMind  ICRL 2015 本文提出了一种基于 attention 的用于图像中识别多个物体的模型.该模型是利用RL来训练 Deep RNN,以找到输入图像中最相关的区域.尽管在训练的过程中,仅仅给出了类别标签,但是仍然可以学习定位并且识别出多个物体. Deep Recurrent Visual Attention Model 文中先以单个物体的分类为基础,再拓展到多个…
Attention For Fine-Grained Categorization Google ICLR 2015 本文说是将Ba et al. 的基于RNN 的attention model 拓展为受限更少,或者说是非受限的视觉场景.这个工作和前者很大程度上的不同在于,用一个更加有效的视觉网络,并且在attention RNN之外进行视觉网络的预训练. 前人的工作在学习 visual attention model 时已经解决了一些计算机视觉问题,并且表明加上不同的attention mec…
Recurrent Models of Visual Attention Google DeepMind 模拟人类看东西的方式,我们并非将目光放在整张图像上,尽管有时候会从总体上对目标进行把握,但是也是将目光按照某种次序(例如,从上倒下,从左到右等等)在图像上进行扫描,然后从一个区域转移到另一个区域.这么一个一个的区域,就是定义的part,或者说是 glimpse.然后将这些区域的信息结合起来用于整体的判断和感受. 站在某个底层的角度,物体的显著性已经将这个物体研究的足够透彻.本文就是从这些东西…
Localizing by Describing: Attribute-Guided Attention Localization for Fine-Grained Recognition Baidu Research 本文主要是将part描述利用起来,协助进行part定位,针对每一个定位好的part,再进行每一个part对应属性的识别.首先来看一张图,有一个直观的印象:…
Fully Convolutional Attention Localization Networks: Efficient Attention Localization for Fine-Grained Recognition   细粒度的识别(Fine-grained recognition)的挑战性主要来自于 类内差异(inter-class differences)在细粒度类别中通常是局部的,细微的:类间差异(intra-class differences)由于姿态的变换而导致很大.为了…
在此前的两篇博客中所介绍的两个论文,分别介绍了encoder-decoder框架以及引入attention之后在Image Caption任务上的应用. 这篇博客所介绍的文章所考虑的是生成caption时的与视觉信息无关的词的问题,如"the"."of"这些词其实和图片内容是没什么关系的:而且,有些貌似需要视觉特征来生成的词,其实也可以直接通过语言模型来预测出来,例如"taking on a cell"后生成"phone".…
在上一篇博客中介绍的论文"Show and tell"所提出的NIC模型采用的是最"简单"的encoder-decoder框架,模型上没有什么新花样,使用CNN提取图像特征,将Softmax层之前的那一层vector作为encoder端的输出并送入decoder中,使用LSTM对其解码并生成句子.模型非常直观,而且比常规的encoder-decoder框架还要简单一点(图像特征只在开始时刻输入了decoder,此后就不输入了),但是训练的过程非常讲究,因此取得了20…
Heterogeneous Memory Enhanced Multimodal Attention Model for Video Question Answering 2019-04-25 21:43:11 Paper:https://arxiv.org/pdf/1904.04357.pdf Code: https://github.com/fanchenyou/HME-VideoQA 1. Background and Motivation:  用 Memory Network 做视觉问题…
CBAM: Convolutional Block Attention Module 2018-09-14 21:52:42 Paper:http://openaccess.thecvf.com/content_ECCV_2018/papers/Sanghyun_Woo_Convolutional_Block_Attention_ECCV_2018_paper.pdf GitHub:https://github.com/luuuyi/CBAM.PyTorch 本文提出 channel atten…
Show, Attend and Tell: Neural Image Caption Generation with Visual Attention 2018-08-10 10:15:06 Paper (ICML-2015):http://proceedings.mlr.press/v37/xuc15.pdf Theano (Offical Implementation): https://github.com/kelvinxu/arctic-captions TensorFlow: htt…
Attention Is All You Need 2018-04-17 10:35:25  Paper:http://papers.nips.cc/paper/7181-attention-is-all-you-need.pdf Code(PyTorch Version):https://github.com/jadore801120/attention-is-all-you-need-pytorch Video Tutorial: https://www.youtube.com/watch?…
Graph Attention Networks 2018-02-06  16:52:49 Abstract: 本文提出一种新颖的 graph attention networks (GATs), 可以处理 graph 结构的数据,利用 masked self-attentional layers 来解决基于 graph convolutions 以及他们的预测 的前人方法(prior methods)的不足. 对象:graph-structured data. 方法:masked self-a…
主流的序列到序列模型都是基于含有encoder和decoder的复杂的循环或者卷积网络.而性能最好的模型在encoder和decoder之间加了attentnion机制.本文提出一种新的网络结构,摒弃了循环和卷积网络,仅基于attention机制. self-attention是一种attention机制,它是在单个序列中计算每个位置与其他不同位置关系从而计算序列.Transformer是第一个完全依靠self-attention机制来计算输入和输出表示. 模型架构     encoder 编码…
目录 摘要 一.引言 二.相关工作 基于体素网格的特征学习 直接从非结构化点云中学习特征 从多视图模型中学习特征 几何深度学习的学习特征 三.GAPNet架构 3.1 GAPLayer 局部结构表示 单头GAPLayer 多头机制 3.2注意力池化层 3.3 GAPNet架构 四.实验 4.1分类 数据集 网络结构 训练细节 结果 消融研究 4.2 语义部件分割 数据集 模型结构 训练细节 结果 五.结论 GAPNet: Graph Attention based Point Neural Ne…
两周以前读了些文档自动摘要的论文,并针对其中两篇( [2] 和 [3] )做了presentation.下面把相关内容简单整理一下. 文本自动摘要(Automatic Text Summarization)就是说在不改变文档原意的情况下,利用计算机程序自动地总结出文档的主要内容.自动摘要的应用场景非常多,例如新闻标题生成.科技文献摘要生成.搜索结果片段(snippets)生成.商品评论摘要等.在信息爆炸的互联网大数据时代,如果能用简短的文本来表达信息的主要内涵,无疑将有利于缓解信息过载问题. 一…
注意力机制(Attention Mechanism)在自然语言处理中的应用 本文转自:http://www.cnblogs.com/robert-dlut/p/5952032.html  近年来,深度学习的研究越来越深入,在各个领域也都获得了不少突破性的进展.基于注意力(attention)机制的神经网络成为了最近神经网络研究的一个热点,本人最近也学习了一些基于attention机制的神经网络在自然语言处理(NLP)领域的论文,现在来对attention在NLP中的应用进行一个总结,和大家一起分…
注意力机制(Attention Mechanism)在自然语言处理中的应用 近年来,深度学习的研究越来越深入,在各个领域也都获得了不少突破性的进展.基于注意力(attention)机制的神经网络成为了最近神经网络研究的一个热点,本人最近也学习了一些基于attention机制的神经网络在自然语言处理(NLP)领域的论文,现在来对attention在NLP中的应用进行一个总结,和大家一起分享. 1 Attention研究进展 Attention机制最早是在视觉图像领域提出来的,应该是在九几年思想就提…
Attention 机制. 参考:https://blog.csdn.net/xiewenbo/article/details/79382785 要是关注深度学习在自然语言处理方面的研究进展,我相信你一定听说过Attention Model(后文有时会简称AM模型)这个词.AM模型应该说是过去一年来NLP领域中的重要进展之一,在很多场景被证明有效.听起来AM很高大上,其实它的基本思想是相当直观简洁的. 1.引言 机器学习领域中的Attention Model这个名字,是从认知心理学里面的人脑注意…
最近一直在研究深度语义匹配算法,搭建了个模型,跑起来效果并不是很理想,在分析原因的过程中,发现注意力模型在解决这个问题上还是很有帮助的,所以花了两天研究了一下. 此文大部分参考深度学习中的注意力机制(2017版) 张俊林的博客,不过添加了一些个人的思考与理解过程.在github上找到一份基于keras框架实现的可运行的注意模型代码:Attention_Network_With_Keras.如有不足之处,欢迎交流指教. 注意力模型:对目标数据进行加权变化.人脑的注意力模型,说到底是一种资源分配模型…
Sequence-to-sequence Framework A Neural Attention Model for Abstractive Sentence Summarization Alexander M. Rush et al., Facebook AI Research/Harvard EMNLP2015 sentence level seq2seq模型在2014年提出,这篇论文是将seq2seq模型应用在abstractive summarization任务上比较早期的论文.同组的…
自然语言处理中的Attention Model:是什么及为什么 2017-07-13 张俊林 待字闺中 要是关注深度学习在自然语言处理方面的研究进展,我相信你一定听说过Attention Model(后文有时会简称AM模型)这个词.AM模型应该说是过去一年来NLP领域中的重要进展之一,在很多场景被证明有效.听起来AM很高大上,其实它的基本思想是相当直观简洁的.本文作者可以对灯发誓:在你读完这篇啰里啰嗦的文章及其后续文章后,一定可以透彻了解AM到底是什么,以及轻易看懂任何有关论文看上去复杂的数学公…
Attention in Long Short-Term Memory Recurrent Neural Networks by Jason Brownlee on June 30, 2017 in Deep Learning   The Encoder-Decoder architecture is popular because it has demonstrated state-of-the-art results across a range of domains. A limitati…
自然语言处理中的Attention Model:是什么及为什么 https://blog.csdn.net/malefactor/article/details/50550211 /* 版权声明:可以任意转载,转载时请标明文章原始出处和作者信息 .*/ author: 张俊林 要是关注深度学习在自然语言处理方面的研究进展,我相信你一定听说过Attention Model(后文有时会简称AM模型)这个词.AM模型应该说是过去一年来NLP领域中的重要进展之一,在很多场景被证明有效.听起来AM很高大上…
一.概述 自动摘要可以从很多角度进行分类,例如单文档摘要/多文档摘要.单语言摘要/跨语言摘要等.从技术上说,普遍可以分为三类: i. 抽取式摘要(extractive),直接从原文中抽取一些句子组成摘要.本质上就是个排序问题,给每个句子打分,将高分句子摘出来,再做一些去冗余(方法是MMR)等.这种方式应用最广泛,因为比较简单,比如博客园的博客摘要就是前面几句话.经典方法有LexRank和整数线性规划(ILP). LexRank是将文档中的每个句子都看作节点,句子之间的相似度看作节点之间的边的权重…
近年来,深度学习的研究越来越深入,在各个领域也都获得了不少突破性的进展.基于注意力(attention)机制的神经网络成为了最近神经网络研究的一个热点,下面是一些基于attention机制的神经网络在自然语言处理(NLP)领域的论文,现在来对attention在NLP中的应用进行一个总结,和大家一起分享. 1 Attention研究进展 Attention机制最早是在视觉图像领域提出来的,应该是在九几年思想就提出来了,但是真正火起来应该算是google mind团队的这篇论文<Recurrent…