Spark的序列化】的更多相关文章

Spark序列化这块网上讲的比较少,自己还没来得及看这块代码,今天编程的时候遇到一个Hadoop的Writerable实现在Spark无法序列化的问题.我的代码如下: object EntryApp extends App{ val conf = new SparkConf().setAppName("cgbdata").setMaster("local") val sc = new SparkContext(conf) val hadoopConfig = new…
spark的序列化主要使用了hadoop的writable和java的Serializable. 说到底就是使用hadoop的writable替换了java的默认序列化实现方式. class SerializableWritable[T <: Writable](@transient var t: T) extends Serializable { def value: T = t override def toString: String = t.toString private def wr…
概叙: 在任何分布式系统中,序列化都是扮演着一个重要的角色的.如果使用的序列化技术,在执行序列化操作的时候很慢,或者是序列化后的数据还是很大,那么会让分布式应用程序的性能下降很多.所以,进行Spark性能优化的第一步,就是进行序列化的性能优化. Spark自身默认就会在一些地方对数据进行序列化,比如Shuffle.还有就是,如果我们的算子函数使用到了外部的数据(比如Java内置类型,或者自定义类型),那么也需要让其可序列化. 而Spark自身对于序列化的便捷性和性能进行了一个取舍和权衡.默认,S…
[Java序列化与反序列化] Java序列化是指把Java对象转换为字节序列的过程:而Java反序列化是指把字节序列恢复为Java对象的过程.序列化使用场景:1.数据的持久化,通过序列化可以把数据永久地保存到硬盘上(通常存放在文件里).2.远程通信,即在网络上传送对象的字节序列. 这篇文章写的不错https://blog.csdn.net/wangloveall/article/details/7992448 [Spark序列化与反序列化场景] 在Spark中,主要有三个地方涉及序列化与反序列化…
本文主要打算对spark内部的序列化机制以及在shuffle map中起衔接作用的MapOutputTracker做一下剖析.主要涉及具体实现原理以及宏观设计的一些思路. 1,spark序列化 任何一个分布式框架,序列化都是其必不可少并且很重要一部分,spark也不例外.spark设计序列化的主要类以及之间的依赖包含关系如下图: 上图中,虚线表示依赖关系,而实线表示继承关系.各个类的解释如下: a,SerializerManager可以认为是入口类,提供相关实现供外部序列化和反序列化时调用. b…
Spark的官方文档再三强调那些将要作用到RDD上的操作,不管它们是一个函数还是一段代码片段,它们都是“闭包”,Spark会把这个闭包分发到各个worker节点上去执行,这里涉及到了一个容易被忽视的问题:闭包的“序列化”. 显然,闭包是有状态的,这主要是指它牵涉到的那些自由变量以及自由变量依赖到的其他变量,所以,在将一个简单的函数或者一段代码片段(就是闭包)传递给类似RDD.map这样的操作前,Spark需要检索闭包内所有的涉及到的变量(包括传递依赖的变量),正确地把这些变量序列化之后才能传递到…
一.spark的序列化 1.1.官网解释 http://spark.apache.org/docs/2.1.1/tuning.html#data-serialization 序列化在任何分布式应用程序的性能中起着重要作用.将对象序列化或消耗大量字节的速度慢的格式将大大减慢计算速度.通常,这将是您应该优化Spark应用程序的第一件事.Spark旨在在便利性(允许您使用操作中的任何Java类型)和性能之间取得平衡.它提供了两个序列化库: Java序列化:默认情况下,Spark使用Java Objec…
Spark是一个通用的大规模数据快速处理引擎.可以简单理解为Spark就是一个大数据分布式处理框架.基于内存计算的Spark的计算速度要比Hadoop的MapReduce快上50倍以上,基于磁盘的计算速度也快于10倍以上.Spark运行在Hadoop第二代的yarn集群管理之上,可以轻松读取Hadoop的任何数据.能够读取HBase.HDFS等Hadoop的数据源. 从Spark 1.0版本起,Spark开始支持Spark SQL,它最主要的用途之一就是能够直接从Spark平台上面获取数据.并且…
1.配置多个executor 在项目中,由于数据量为几百万甚至千万级别,如果一个executor装载的对象过多,会导致GC很慢.项目中,我们使一个worker节点执行app时启动多个executor,从而加大并发度,解决full GC慢的问题.同时,由于启动了多个exeucute,在内存与核数不变的情况下,需要调整分配给每个execute的内存数及核数. 2.配置数据序列化 Spark默认序列化方式为Java的ObjectOutputStream序列化一个对象,速度较慢,序列化产生的结果有时也比…
前言 在之前的大数据学习系列之七 ----- Hadoop+Spark+Zookeeper+HBase+Hive集群搭建 中介绍了集群的环境搭建,但是在使用hive进行数据查询的时候会非常的慢,因为hive默认使用的引擎是MapReduce.因此就将spark作为hive的引擎来对hbase进行查询,在成功的整合之后,我将如何整合的过程写成本篇博文.具体如下! 事前准备 在进行整合之前,首先确保Hive.HBase.Spark的环境已经搭建成功!如果没有成功搭建,具体可以看我之前写的大数据学习系…