noi.ac day1t1 candy】的更多相关文章

传送门 分析 我们知道如果设A,B分别为将两家店从大到小排序之后各自的前缀和,则 Ans=Max{Min{A[i],B[j]}-W*(i+j)}. 为了得到这个Ans我们可以枚举两个数的Min,然后剩下那一个则使用二分求出在另一数列中大于Min的中最小的,这样的原因是为了使得W*(i+j)更小,从而在可能情况下达到最优. 代码 #include<iostream> #include<cstdio> #include<cstring> #include<string…
链接 一个直观的想法是,枚举最小的是谁,然后二分找到另外一个序列对应位置更新答案,复杂度 \(O(NlogN)\) 实际上不需要二分,因为每次当最大的变大之后,原来不行的最小值现在也一定不行,指针移动是单调的,直接 \(O(N)\) 扫描即可 #include<bits/stdc++.h> #define REP(i,a,b) for(int i(a);i<=(b);++i) #define dbg(...) fprintf(stderr,__VA_ARGS__) using names…
NOI.AC NOIP模拟赛 第一场 补记 candy 题目大意: 有两个超市,每个超市有\(n(n\le10^5)\)个糖,每个糖\(W\)元.每颗糖有一个愉悦度,其中,第一家商店中的第\(i\)颗糖果的愉悦度为\(A_i\),而第二家商店中的第\(i\)颗糖果的愉悦度为\(B_i\). 在每家商店买的糖果会被打包到一个袋子中(可以在一家商店什么都不买,此时认为这家商店的袋子为空).因为这两个袋子外观是一样的,所以会从两个袋子中随机选择一个,然后吃光里面的糖果.定义一种买糖果的方案的愉悦度为:…
NOI.AC省选赛 第五场T1 A. Mas的童年 题目链接 http://noi.ac/problem/309 思路 0x00 \(n^2\)的暴力挺简单的. ans=max(ans,xor[j-1]+xor[j-1]^xor[i]); 01trie树求最大异或和相信大家都会.不会看这里. 这与我们今天这个题目有关吗? 毫无关系. xor[i]的某一位为1,xor[j]的那一位不管是啥,贡献都是为1. 而xor[i]的某一位为0,xor[j]的贡献是2或0.(xor[j]位上为1贡献为2) (…
题目传送门:http://noi.ac/problem/31 一道思路好题考虑模拟$Kruskal$的加边方式,然后能够发现非最小生成树边只能在一个已经由边权更小的边连成的连通块中,而树边一定会让两个连通块合为一个,故考虑以连通块为切入点设计$DP$设字符串$s_1s_2s_3...s_i,s_1 \geq s_2 \geq s_3 \geq ... \geq s_i$表示某一个图中各个连通块的大小(可以发现我们只关心连通块有多大,但不关心连通块内具体有哪些点,因为当所有连通块大小一一对应的时候…
NOI.AC NOIP模拟赛 第五场 游记 count 题目大意: 长度为\(n+1(n\le10^5)\)的序列\(A\),其中的每个数都是不大于\(n\)的正整数,且\(n\)以内每个正整数至少出现一次. 对于每一个正整数\(k=1,..,n+1\),求出的本质不同的长度为\(k\)的子序列的数量.对\(10^9+7\)取模. 思路: 由于只会有一个数会重复,因此考虑重复的这个数取\(0\)个.\(1\)个和\(2\)个的情况,用组合数直接算即可. 源代码: #include<cstdio>…
NOI.AC NOIP模拟赛 第六场 游记 queen 题目大意: 在一个\(n\times n(n\le10^5)\)的棋盘上,放有\(m(m\le10^5)\)个皇后,其中每一个皇后都可以向上.下.左.右.左上.左下.右上.右下这\(8\)个方向移动.其中每一个皇后可以攻击这八个方向上离它最近的皇后. 求有多少皇后被攻击到\(0,1,\ldots,8\)次. 保证\(m\)个皇后中任意两个不在同一个位置. 思路: 考虑左右方向的攻击,对每一行开一个set,按列编号插入,看一下是否存在前驱/后…
NOI.AC NOIP模拟赛 第二场 补记 palindrome 题目大意: 同[CEOI2017]Palindromic Partitions string 同[TC11326]ImpossibleGame…
NOI.AC NOIP模拟赛 第四场 补记 子图 题目大意: 一张\(n(n\le5\times10^5)\)个点,\(m(m\le5\times10^5)\)条边的无向图.删去第\(i\)条边需要\(w_i\)的代价.现在要通过删去一些边,使得剩下的满足对于这个图的任意一些点,这些点之间互联的边数小于这些点的总点数.求总代价最小值 思路: 不难发现答案为整张图代价和-最大生成森林代价和. 时间复杂度\(\mathcal O(m\alpha(n))\). 源代码: #include<cstdio…
NOI.AC NOIP模拟赛 第三场 补记 列队 题目大意: 给定一个\(n\times m(n,m\le1000)\)的矩阵,每个格子上有一个数\(w_{i,j}\).保证\(w_{i,j}\)互不相同.\(q(q\le5\times10^5)\)次询问,每次给出\(x,y\),询问有多少数满足在本行是第\(x\)大,在本列是第\(y\)大. 思路: 对每行.每列分别排序,求出每个数是本行.本列第几大.然后即可预处理答案. 时间复杂度\(\mathcal O(n^2\log n)\). 源代码…